Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Conference on Biomaterials in medicine and veterinary medicine : 9--12 October 2014, Rytro, Poland
Języki publikacji
Abstrakty
Use of bioresorbable materials in bone surgery opens up new possibilities in treatment of injuries and orthopaedic illnesses. Lack of necessity for implant removal surgery enables faster treatment and substantial reduction in costs of treatment. In recent years, these advantages have caused growing interest in materials of this type. It must be noted that bioresorbable materials in most cases are based on macromolecular materials – polymers which have completely different mechanical characteristics than traditional materials used in bone surgery. Bioresorbable properties give enormous possibilities but also present difficult challenges related to construction of new types of implants based on materials of this type. Full characteristics of new materials is indispensable in construction process, especially of mechanical properties and surface properties. The latter is responsible for contact with biological environment and bioactivity is determined on the basis of hydroxyapatite precipitations amount on material surface. In case of polymer based composites, influence of phases in powder and fibre form on properties is fundamental to be proved. Addition of particle modifier into polymer matrix causes reduction in strength of polymer. This phenomenon is mostly associated with homogenic particle distribution difficult to be achieved in case of higher filler content. However biological interplay is insufficient by low filler contents. Therefore in the below presented investigations different filler contents were applied and their influence on mechanical properties was investigated to achieve compromise between mechanical properties and bioactive, antibacterial or anti-inflammatory effect of the applied particles. Acquaintance with these results allowed for elaboration of full range of material and constructive solutions for implants in bone surgery. Biodegradable biopolymers have low mechanical properties (Young’s modulus, strength, viscoelasticity). Construction process of bioresorbable implants requires to be completely changed in way of conduction. Computer simulation based investigations of stress-strain characteristics is necessary to be carried out in each stage of research. Bigger cross-sections and different shapes of implants are required to achieve suitable stiffness. Application of bone screws made of resorbable materials requires design of these elements from the bottom up. Design of optimal shape of screw thread and point of contact between screw head and bone plate is particularly important. 9 different implants were designed within the confines of conducted research – including for tibia, humerus, radius, ulna, phalanges, clavicle, calcaneus, pelvis and metatarsus. Stress values were determined in analyzed implants. Acceptable loads were determined for individual types of plate. Plates made of PLA can bear small loads and play role mainly as grasping and holding bone element. In most cases additional immobilization of operated bone is required in order to prevent plate or screw destruction. In case of stabilization function for resorbable materials – as many screws as possible are recommended – thanks to it, screws are less loaded and the plate-bone system is more immobilized.
Słowa kluczowe
Czasopismo
Rocznik
Strony
108
Opis fizyczny
Twórcy
autor
- Division of Biomedical Engineering, Institute of Mechanical Engineering and Machine Operation, University of Zielona Gora, 50 Podgórna Str., 65-246 Zielona Góra, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave.30, 30-059 Krakow, Poland
autor
- NOBO Solutions S.A., al. Kasztanowa 3a-5 53-125 Wrocław, Poland
autor
- Central Clinical Hospital Ministry of Interior in Warsaw, 137 Wołoska Str, 02-507 Warsaw, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54685cf2-cddf-4387-b5e4-5558bfc21a2a