PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acceleration of the hydrological cycle and its impact on water availability over land: an adverse effect of climate change

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydrological cycle, or water cycle, is one of the most important geochemical cycles on our planet. Normal functioning of its mechanisms (evaporation/evapotranspiration, condensation, and precipitation) is very important for the well-being of human beings. However, the acceleration of the hydrological cycle, mainly due to global warming, is increasing the frequency and intensity of extreme events (floods, droughts, and alterations in water resources) in many regions around the globe. This acceleration or intensification occurs because of rising temperature, which intensifies and speeds up evaporation (probable increase of 5.2%) and precipitation (probable increase of 6.5%); hence this scenario is escalating climate change. According to the datasets retrieved from the Global Land Data Assimilation System (GLDAS) of NASA, rain precipitation rate has shown changes in various regions of the world. Consequently, extreme and frequent events of heavy precipitation, floods, and droughts are also deteriorating the quality of water and preventing recharge of water reservoirs. Although some regions of the world will experience positive outcomes of this scenario in terms of water availability (due to frequent intense precipitation), most of the world’s regions are expected to face the daunting issue of water unavailability, as predicted by many researchers.
Twórcy
  • Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
  • Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
autor
  • Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
Bibliografia
  • Acharya B., Joshi B., 2020, Flood frequency analysis for an ungauged Himalayan river basin using different methods: a case study of Modi Khola, Parbat, Nepal, Meteorology Hydrology and Water Management, 8 (2), 46-51, DOI: 10.26491/mhwm/131092.
  • Allen M.R., Ingram W.J., 2002, Constraints on future changes in climate and the hydrologic cycle, Nature, 418, 224-232, DOI: 10.1038/nature01092.
  • Ansah S.O., Ahiataku M.A., Yorke C.K., Otu-Larbi F., Bashiru Yahaya P.N.L., Lamptey M., 2020, Meteorological analysis of floods in Ghana, Advances in Meteorology, DOI: 10.1155/2020/4230627.
  • Arnell N.W., Liu C., Compagnucci R., da Cunha L., Hanaki K., Howe C., Mailu G., Shiklomanov I., Stakhiv E., 2001, Hydrology and water resources, [in:] IPCC Climate Change 2001: Impacts, Adaptation and Vulnerability, The Third Assessment Report of Working Group II of the Intergovernmental Panel on Climate Change, J.J. McCarthy, O.F. Canziani, N.A. Leary, D.J. Dokken, K.S. White (eds.), Cambridge University Press, Cambridge, UK, 133-191.
  • Barlow M., Zaitchik B., Paz S., Black E., Evans J., Hoell A., 2016, A review of drought in the Middle East and southwest Asia, Journal of Climate, 29 (23), 8547-8574, DOI: 10.1175/JCLI-D-13-00692.1.
  • Basara J.B., Maybourn J.N., Peirano C.M., Tate J.E., Brown P.J., Hoey J.D., Smith B.R., 2013, Drought and associated impacts in the Great Plains of the United States - a review, International Journal of Geosciences, 4 (6B), 72-81, DOI: 10.4236/ijg.2013.46A2009.
  • Bates B.C., Kundzewicz Z.W., Wu S., Palutikof J.P. (eds.), 2008, Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.
  • Beaudoing H., Rodell M., 2020, GLDAS Noah Land Surface Model L4 monthly 1.0 x 1.0 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC).
  • Brands E., Rajagopal R., Eleswarapu U., Li P., 2016, Groundwater, International Encyclopedia of Geography, 3237-3253.
  • Britannica T., 2020, Water cycle, Encyclopedia Britannica, available online at https://www.britannica.com/science/water-cycle (data access 24.05.2024).
  • Burke E.J., Brown S.J., Christidis N., 2006, Modelling the recent evolution of global drought and projections for the 21st century with the Hadley Centre climate model, Journal of Hydrometeorology, 7, 1113-1125, DOI: 10.1175/JHM544.1.
  • Butler I.R., Sommer B., Zann M., Zhao J.X., Pandolfi J.M., 2015, The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia, Marine Pollution Bulletin, 96 (1-2), 356-367, DOI: 10.1016/j.marpolbul.2015.04.047.
  • Can A., Ozsoy H., 2023, A different perspective on air pollution measurements, Journal of Polytechnic, 26 (1), 329-344, DOI: 10.2339/politeknik.1126580.
  • Carpenter S.R., Booth E.G., Kucharik C.J., 2018, Extreme precipitation and phosphorous loads from two agricultural watersheds, Limnology and Oceanography, 63 (3), 1221-1233, DOI: 10.1002/lno.10767.
  • Cavallito M., 2021, 21st century floods have already affected nearly 300 million people, Re Soil Foundation, available online at https://resoilfoundation.org/en/environment/world-flood-study/ (data access 20.05.2024).
  • Chagas V.B.P., Chaffe P.L.B., Blöschl G., 2022, Climate and land management accelerate the Brazilian water cycle, Nature Communications, 13, DOI: 10.1038/s41467-022-32580-x.
  • Chhetri T.B., Dhital Y.P., Tandong Y., Devkota L.P., Dawadi B., 2020, Observations of heavy rainfall and extreme flood events over Banke-Bardiya districts of Nepal in 2016-2017, Progress in Disaster Science, 6, DOI: 10.1016/j.pdisas.2020.100074.
  • Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Le Quéré C., Myneni R.B., Piao S., Thornton P., 2013, Carbon and other biogeochemical cycles, [in:] Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Cook B.I., Anchukaitis K.J., Touchan R., Meko D.M., Cook E.R., 2016, Spatiotemporal drought variability in the Mediterranean over the last 900 years, Journal of Geophysical Research: Atmosphere, 121 (5), 2060-2074, DOI: 10.1002/2015JD023929.
  • Cunha A.P.M.A., Zeri M., Leal K.D., Costa L., Cuartas L.A., Marengo J.A., Tomasella J., Vieira R.M., Barbosa A.A., Cunningham C., Garcia J.V.C., Broedel E., Alvala R., Ribeiro-Neto G., 2019, Extreme drought events over Brazil from 2011 to 2019, Atmosphere, 10 (11), DOI: 10.3390/atmos10110642.
  • DelGenio A.D., Lacis A.A., Ruedy R.A., 1991, Simulations of the effect of a warmer climate on atmospheric humidity, Nature, 351, 382-385, DOI: 10.1038/351382a0.
  • Dutta D., Herath S., 2004, Trend of floods in Asia and flood risk management with integrated river basin approach.
  • Dyson L.L., Heerden J.V., 2001, The heavy rainfall and floods over the northeastern interior of South Africa during February 2000, South African Journal of Science, 97 (3), 80-86, DOI: 10520/EJC97295.
  • Eki R., 2017, Ecology, stormwater management and environmental security in urban centers of developing countries, [in:] International Youth Peace Conference, Nigeria, 9-11th October 2017, Godfrey Okoye University: Ugwuomu.
  • Erfanian A., Wang G., Fomenko L., 2017, Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST, Scientific Reports, 7 (1), DOI: 10.1038/s41598-017-05373-2.
  • Farooqi A.B., Khan A.H., Mir H., 2005, Climate change perspective in Pakistan, Pakistan Journal of Meteorology, 2 (3), 11-21.
  • Fekete A., Sandholz S., 2021, Here comes the flood, but not failure? Lessons to learn after the heavy rain and pluvial floods in Germany, 2021, Water, 13 (21), DOI: 10.3390/w13213016.
  • Feng G-L, Wu Y-P., 2016, Signal of acceleration and physical mechanism of water cycle in Xinjiang, China, PLoS ONE, 11 (12), DOI: 10.1371/journal.pone.0167387.
  • Francipane A., Pumo D., Sinagra M., La Loggia G., Noto L.V., 2021, A paradigm of extreme rainfall pluvial floods in complex urban areas: the flood event of 15 July 2020 in Palermo (Italy), Natural Hazards and Earth System Sciences, 21 (8), 2563-2580, DOI: 10.5194/nhess-21-2563-2021, 2021.
  • Garreaud R.D., Boisier J.P., Rondanelli R., Montecinos A., Sepulveda H.H., Veloso-Aguila D., 2020, The central Chile mega drought (2010-2018): a climate dynamics perspective, International Journal of Climatology, 40 (1), 421-439, DOI: 10.1002/joc.6219.
  • Gavin N.T., Leonard-Milson L., Montgomery J., 2011, Climate change, flooding and media in Britain, Public Understanding of Science, 20 (3), 422-438, DOI: 10.1177/0963662509353377.
  • GISTEMP Team, 2023, GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 20th February, 2022.
  • Gleeson T., Wada Y., Bierkens M.F., Van Beek L.P., 2012, Water balance of global aquifers revealed by groundwater footprint, Nature, 488 (7410), 197-200, DOI: 10.1038/nature11295.
  • Graham S., Parkinson S., Chahine M., 2010, The Water Cycle, available online at https://earthobservatory.nasa.gov/features/Water/page3.php (data access 27.05.2024).
  • Guhathakurta P., Sreejith O.P., Menon P.A., 2011, Impact of climate change on extreme rainfall events and flood risk in India, Journal of Earth System Science, 120, 359-373, DOI: 10.1007/s12040-011-0082-5.
  • Held I.M., Soden B.J., 2000, Water vapor feedback and global warming, Annual Review of Environment and Resources, 25, 441-475, DOI: 10.1146/annurev.energy.25.1.441.
  • Huntington T.G., 2005, Evidence for intensification of the global water cycle: review and synthesis, Journal of Hydrology, 319 (1-4), 83-95, DOI: 10.1016/j.jhydrol.2005.07.003.
  • Iqbal M., Rabbani A., Haq F., Bhimani S., 2022, The floods of 2022: economic and health crisis hits Pakistan, Annals of Medicine and Surgery, 84, DOI: 10.1016/j.amsu.2022.104800.
  • IPCC, 2001, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK.
  • IPCC, 2008, Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp.
  • Jiménez-Muñoz J.C., Mattar C., Barichivich J., Santamaría-Artigas A., Takahashi K., Malhi Y., Sobrino J.A., van der Schrier G., 2016, Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016, Scientific Reports, 6, DOI: 10.1038/srep33130.
  • Kocaman S., Tavus B., Nefeslioglu H.A., Karakas G., Gokceoglu C., 2020, Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August 2018) using optical and radar data, Geofluids, 1, DOI: 10.1155/2020/8830661.
  • Koutsoyiannis D., 2020, Revisiting the global hydrological cycle: is it intensifying?, Hydrology and Earth System Sciences, 24 (8), 3899- 3932, DOI: 10.5194/hess-24-3899-2020.
  • Lehner B., Czisch G., Vassolo S., 2005, The impact of global change on the hydropower potential of Europe: a model-based analysis, Energy Policy, 33 (7), 839-855, DOI: 10.1016/j.enpol.2003.10.018.
  • Lenssen N., Schmidt G., Hansen J., Menne M., Persin A., Ruedy R., Zyss D., 2019, Improvements in the GISTEMP uncertainty model, Journal of Geophysical Research: Atmospheres, 124 (12), 6307-6326, DOI: 10.1029/2018JD029522.
  • Li X., Huang T., Ma W., Sun X., Zhang H., 2015, Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: implications for management, Science of the Total Environment, 521-522, 27-36, DOI: 10.1016/j.scitotenv.2015.03.062.
  • Li Y., Aemisegger F., Riedl A., Buchmann N., Eugster W., 2020, The role of dew and radiation fog inputs in the local water cycling of a temperate grassland in Central Europe, Hydrology and Earth System Sciences, 25 (5), 2617-2648, DOI: 10.5194/hess-2020-493.
  • Loaciga H.A., Valdes J.B., Vogel R., Garvey J., Schwarz H., 1996, Global warming and the hydrologic cycle, Journal of Hydrology, 174 (1-2), 83-127, DOI: 10.1016/0022-1694(95)02753-X.
  • Magrin G.O., Travasso M.I., Rodríguez G.R., 2005, Changes in climate and crops production during the 20th century in Argentina, Climatic Change, 72, 229-249, DOI: 10.1007/s10584-005-5374-9.
  • Manabe S., Wetherald R.T., Milly P.C.D., Delworth T.L., Stouffer R.J., 2004, Century-scale change in water availability: CO2-quadrupling experiment, Climatic Change, 64, 59-76, DOI: 10.1023/B:CLIM.0000024674.37725.ca.
  • Marengo J.A., Seluchi M.E., Cunha A.P., Cuartas L.A., Goncalves D., Sperling V.B., Ramos A.M., Dolif G., Saito S., Bender F., Lopes T.R., Alvala R.C., Moraes O.L., 2023, Heavy rainfall associated with floods in southeastern Brazil in November-December 2021, Natural Hazards, 116, 3617-3644, DOI: 10.1007/s11069-023-05827-z.
  • Masih I., Maskey S., Mussá F.E.F., Trambauer P., 2014, A review of droughts on the African continent: a geospatial and long-term perspective, Hydrology and Earth System Sciences, 18 (9), 3635-3649, DOI: 10.5194/hess-18-3635-2014.
  • Miller K.A., Yates D.N., 2006, Climate Change and Water Resources: A Primer for Municipal, Awwa Research Foundation, 83 pp.
  • Mirza M.M.Q., 2003, Three recent extreme floods in Bangladesh: a hydro-meteorological analysis, Natural Hazards, 28, 35-64, DOI: 10.1023/A:1021169731325.
  • Mu D., Luo P., Lyu J., Zhou M., Huo A., Duan W., Nover D., He B., Zhao X., 2020, Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam, Journal of Flood Risk Management, 14 (1), DOI: 10.1111/jfr3.12668.
  • Müller O.V., Berbery E.H., Alcaraz-Segura D., Ek M.B., 2014, Regional model simulations of the 2008 drought in southern South America using a consistent set of land surface properties, Journal of Climate, 27 (17), 6754-6778, DOI: 10.1175/JCLI-D-13- 00463.1.
  • Nanditha J.S., Kushwaha A.P., Singh R., Malik I., Solanki H., Chuphal D.S., Dangar S., Mahto S.S., Mishra V., 2023, The Pakistan flood of August 2022: causes and implications, Earth’s Future, 11 (3), DOI: 10.1029/2022EF003230.
  • NAST, 2001, Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change: Overview, A Report of the National Assessment Synthesis Team, US Global Change Research Program, Cambridge University Press, Cambridge, United Kingdom, 620 pp.
  • Neena J.M., Suhas E., Goswami B.N., 2011, Leading role of internal dynamics in the 2009 Indian summer monsoon drought, Journal of Geophysical Research: Atmospheres, 116 (D13), DOI: 10.1029/2010JD015328.
  • Nicholson S.E., 2014, A detailed look at the recent drought situation in the Greater Horn of Africa, Journal of Arid Environments, 103, 71-79, DOI: 10.1016/j.jaridenv.2013.12.003.
  • Palmer T.N., Räisänen J., 2002, Quantifying the risk of extreme seasonal precipitation events in a changing climate, Nature, 415 (6871), 512-514, DOI: 10.1038/415512a.
  • Pashiardis S., Michaelides S., 2008, Implementation of the standardized precipitation index (SPI) and the reconnaissance drought index (RDI) for regional drought assessment: a case study for Cyprus, European Water, 23 (24), 57-65.
  • Pittock A.B. (ed.), 2003, Climate Change: An Australian Guide to the Science and Potential Impacts, Australian Greenhouse Office, Canberra, ACT, 239 pp.
  • Powers J.E., Mureithi M., Mboya J., Campolo J., Swarthout J.M., Pajka J., Null C., Pickering A.J., 2023, Effects of high temperature and heavy precipitation on drinking water quality and child hand contamination levels in Rural Kenya, Environmental Science and Technology, 57 (17), 6975-6988, DOI: 10.1021/acs.est.2c07284.
  • Ramanathan V., Krutzen P.J., Kiehl J.T., Rosenfeld D., 2001, Aerosols, climate, and the hydrologic cycle, Science, 294 (5549), 2119- 2124, DOI: 10.1126/science.1064034.
  • Rebetez M., Mayer H., Dupont O., Schindler D., Gartner K., Kropp J.P., Menzel A., 2006, Heat and drought 2003 in Europe: a climate synthesis, Annals of Forest Science, 63 (6), 569-577, DOI: 10.1051/forest:2006043.
  • Rehman A., Jingdong L., Du Y., Khatoon R, Wagan S.A., Nisar S.K., 2015, Flood disaster in Pakistan and its impact on agriculture growth (a review), Journal of Economics and Sustainable Development, 6 (23), 39-42.
  • Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D., 2004, The Global Land Data Assimilation System, Bulletin of the American Meteorological Society, 85, 381-394, DOI: 10.1175/BAMS-85-3-381.
  • Samantaray S., Sahoo A., 2020, Estimation of flood frequency using statistical method: Mahanadi River basin, India, H2Open Journal, 3 (1), 189-207, DOI: 10.2166/h2oj.2020.004.
  • Schwalm C.R., Williams C.A., Schaefer K., Baldocchi D., Black T.A., Goldstein A.H., Law B.E., Oechel W.C., Paw U.K.T., Scott R.L., 2012, Reduction in carbon uptake during turn of the century drought in western North America, Nature Geoscience, 5 (8), DOI: 10.1038/ngeo1529.
  • Sherani S.H., 2020, Efficient irrigation practices to minimize water loss, Pakistan & Gulf Economist, available online at https://www.pakistangulfeconomist.com/2020/10/12/efficient-irrigation-practices-to-minimize-water-loss/ (data access 22.05.2024).
  • Shih Y.J., Chen J.S., Chen Y.J., Yang P.Y., Kuo Y.J., Chen T.H., 2021, Impact of heavy precipitation events on pathogen occurrence in estuarine areas of the Puzi River in Taiwan, PLoS ONE, 16 (8), DOI: 10.1371/journal.pone.0256266.
  • Spinoni J., Barbosa P., De Jager A., McCormick N., Naumann G., Vogt J.V., Magni D., Masante D., Mazzeschi M., 2019, A new global database of meteorological drought events from 1951 to 2016, Journal of Hydrology: Regional Studies, 22, DOI: 10.1016/j.ejrh.2019.100593.
  • Steve G., 2010, The water cycle, Earth Observatory, available online at https://earthobservatory.nasa.gov/features/Water (data access 22.05.2024).
  • Tan X., Wu X., Huang Z., Deng S., Hu M., Gan T.Y., 2022, Detection and attribution of the decreasing precipitation and extreme drought 2020 in southwestern China, Journal of Hydrology, 610, DOI: 10.1016/j.jhydrol.2022.127996.
  • Thomas F., Sabel C.E., Morton K., Hiscock R., Depledge M.H., 2014, Extended impacts of climate change on health and wellbeing, Environmental Science and Policy, 44, 271-278, DOI: 10.1016/j.envsci.2014.08.011.
  • Turral H., Burke J., Faurè J.M., 2011, Climate Change, Water and Food Security, Food and Agriculture Organization of the United Nations.
  • Ulbrich U., Brücher T., Fink A.H., Leckebusch G.C., Krüger A., Pinto J.G., 2003, The central European floods of August 2002: Part 1 - Rainfall periods and flood development, Weather, 58 (10), 371-377, DOI: 10.1256/wea.61.03A.
  • US-EPA, 2021a, Climate Change Indicators: Heavy Precipitation, available online at https://www.epa.gov/climate-indicators/climatechange-indicators-heavy-precipitation (data access 22.05.2024).
  • US-EPA, 2021b, Climate Change Indicators: U.S. and Global Precipitation, available online at https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-precipitation (data access 22.05.2024).
  • US-EPA, 2021c, Climate Change Indicators: Drought, available online at https://www.epa.gov/climate-indicators/climate-changeindicators-drought (data access 22.05.2024).
  • Van Dijk, S., Jeffrey J., Katz, M.R., 2013, A randomized, controlled, pilot study of dialectical behavior therapy skills in a psychoeducational group for individuals with bipolar disorder, Journal of Affective Disorders, 145 (3), 386-593, DOI: 10.1016/j.jad.2012.05.054.
  • Versini P.A., Pouget L., Mcennis S., Custodio E., Escaler I., 2016, Climate change impact on water resources availability: case study of the Llobregat River basin (Spain), Hydrological Sciences Journal, 61 (14), 2496-2508, DOI: 10.1080/02626667.2016.1154556.
  • Wetherald R.T., Manabe S., 2002, Simulation of hydrologic changes associated with global warming, Journal of Geophysical Research: Atmospheres, 107 (D19), DOI: 10.1029/2001D001195.
  • Wild M., Ohmura A., Gilgen H., Rosenfeld D., 2004, On the consistency of trends in radiation and temperature record and implications for the global hydrologic cycle, Geophysical Research Letters, 31 (11), DOI: 10.11029/2003L091188.
  • Woodhouse C.A., Meko D.M., MacDonald G.M., Stahle D.W., Cook E.R., 2010, A 1,200-year perspective of 21st century drought in southwestern North America, Proceedings of the National Academy of Sciences, 107 (50), 21283-21288, DOI: 10.1073/pnas.091119710.
  • Yang J., Gong D., Wang W., Hu M., Mao R., 2012, Extreme drought event of 2009/2010 over southwestern China, Meteorology and Atmospheric Physics, 115 (3-4), 173-184, DOI: 10.1007/s00703-011-0172-6.
  • Yeh P.J.-F., Wu C., 2018, Recent acceleration of the terrestrial hydrologic cycle in the U.S. Midwest, Journal of Geophysical Research: Atmospheres, 123 (6), 2993-3008, DOI: 10.1002/ 2017JD027706.
  • You C.-H., Lee D.-I., Kang M.-Y., Kim H.-J., 2016, Classification of rain types using drop size distributions and polarimetric radar: Case study of a 2014 flooding event in Korea, Atmospheric Research, 181, 211-219, DOI: 10.1016/j.atmosres.2016.06.024.
  • Yuan X., Wang L., Wood E.F., 2018, Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season, Bulletin of the American Meteorological Society, 99 (1), 86-90, DOI: 10.1175/BAMS-D-17-0077.1.
  • Zhang L., Zhou T., 2015, Drought over East Asia: a review, Journal of Climate, 28 (8), 3375-3399, DOI: 10.1175/JCLI-D-14-00259.1.
  • Zhang Y., Chen W., Cihlar J., 2003, A process-based model for quantifying the impact of climate change on permafrost thermal regimes, Journal of Geophysical Research: Atmospheres, 108 (D22), DOI: 10.1029/2002JD003354.
  • Zhou L., Tian Y., Myneni R.B., Ciais P., Saatchi S., Liu Y.Y., Piao S., Chen H., Vermote E.F., Song C., Hwang T., 2014, Widespread decline of Congo rainforest greenness in the past decade, Nature, 509 (7498), 86-90, DOI: 10.1038/nature13265.
  • Zhu L., Jiang C., Panthi S., Allard S.M., Sapkota A.R., Sapkota A., 2021, Impact of high precipitation and temperature events on the distribution of emerging contaminants in surface water in Mid-Atlantic, United States, Science of the Total Environment, 755, DOI: 10.1016/j.scitotenv.2020.142552.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54670fe9-e157-4b08-a0f0-0d8504e56210
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.