PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Significance of features in object recognition using depth sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article concerns a key topic in the field of visual object recognition – the use of features. Object recognition algorithms typically rely on a fixed vector of pre-selected features extracted from 2D or 3D scenes, which are then analyzed with various classification techniques. On the other hand, the activation of particular features in biological vision systems is hierarchical and data-driven. To achieve a deeper understanding of the subject, we have introduced several mathematical tools to estimate multiple RGB-D features’ relevance for different object recognition tasks and conducted statistical experiments involving our database of high quality 3D point clouds. From the thorough analysis of the obtained results we draw conclusions that may be useful to design better, more adaptive object recognition algorithms.
Słowa kluczowe
Czasopismo
Rocznik
Strony
559--571
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
Bibliografia
  • [1] SILBERMAN N., KOHLI P., HOIEM D., FERGUS R., Indoor segmentation and support inference from RGBD images, [In] ECCV, 2012.
  • [2] LAVOUÉ G., Bag of words and local spectral descriptor for 3D partial shape retrieval, [In] Eurographics, editor, [In] Workshop on 3D Object Retrieval (3DOR), Eurographics, 2011.
  • [3] SIVIC J., ZISSERMAN A., Efficient visual search of videos cast as text retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 2009, pp. 591–606.
  • [4] HARASYMOWICZ-BOGGIO B., SIEMIATKOWSKA B., Object classification with metric and semantic inference, [In] 2013 European Conference on Mobile Robots (ECMR), 2013, pp. 186–191.
  • [5] DALAL N., TRIGGS B., Histograms of oriented gradients for human detection, [In] IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, Vol. 1, 2005, pp. 886–893.
  • [6] HETZEL G., LEIBE B., LEVI P., SCHIELE B., 3D object recognition from range images using local feature histograms, [In] Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Vol. 2, 2001, pp. II-394–II-399.
  • [7] SWAIN M.J., BALLARD D.H., Color indexing, International Journal of Computer Vision 7(1), 1991, pp. 11–32.
  • [8] LIEFENG BO, XIAOFENG REN, FOX D., Kernel descriptors for visual recognition, [In] Advances in Neural Information Processing Systems 23 (NIPS 2010), 2010, pp. 244–252.
  • [9] LIEFENG BO, XIAOFENG REN, FOX D., Depth kernel descriptors for object recognition, [In] 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 821–826.
  • [10] XIAOFENG REN, LIEFENG BO, FOX D., RGB-(D) scene labeling: features and algorithms, [In] 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2759–2766.
  • [11] BUCH A.G., KRAFT D., KAMARAINEN J.-K., PETERSEN H.G., KRUGER N., Pose estimation using local structure-specific shape and appearance context, [In] 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 2080–2087.
  • [12] RUSU R.B., BLODOW N., BEETZ M., Fast point feature histograms (FPFH) for 3D registration, [In] IEEE International Conference on Robotics and Automation, 2009, ICRA ’09, 2009, pp. 3212–3217.
  • [13] SCHNABEL R., WAHL R., KLEIN R., Efficient RANSAC for point-cloud shape detection, Computer Graphics Forum 26(2), 2007, pp. 214–226.
  • [14] OSADA R., FUNKHOUSER T., CHAZELLE B., DOBKIN D., Matching 3D models with shape distributions, [In] SMI 2001 International Conference on Shape Modeling and Applications, 2001, pp. 154–166.
  • [15] BHATTACHARYYA A., On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcutta Mathematical Society 35(1), 1943, pp. 99–109.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5466da70-66e9-4775-9b89-8ea816e5a357
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.