PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of new carbon-nitrogen composites based on waste sweet drinks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The materials under investigation were new carbon-nitrogen composites obtained via pyrolysis and CO2 activation of sweet drinks destined for utilization. Waste Pepsi Cola® has been examined as an alternative and renewable carbon source for composite materials. Nitrogen was introduced into the Pepsi Cola® solution via the addition of guanidine carbonate, before the pyrolysis process. The physicochemical properties of the materials studied were characterized by low- temperature nitrogen adsorption (using BET and BJH methods), elemental analysis, FTIR spectroscopy, scanning electron microscopy (SEM) as well as determination of pHPZC and the number of surface functional groups. Additionally, thermal properties of the samples were investigated by thermogravimetric analysis (TG) and differential thermogravimetry (DTG). The final products were new carbon-nitrogen composites characterized by a very high content of nitrogen (11.2 - 21.6 wt.%) as well as relatively low surface area and pore volume reaching 198 m2/g and 0.16 cm3/g, respectively. Results of FT-IR study and Boehm titration indicated that the composites surface has clearly basic character, which was confirmed by pHpzc values above 8.0.
Rocznik
Strony
1366--1374
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Laboratory of Applied Chemistry, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
Bibliografia
  • BAGREEV, A., MENENDEZ, J. A., DUKHNO, I., TARASENKO, Y., BANDOSZ, T. J., 2005. Oxidative adsorption of methyl mercaptan on nitrogen-enriched bituminous coal-based activated carbon. Carbon 43, 208-210.
  • BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2017. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 152, 211-222.
  • BOEHM, H. P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons.Carbon 32, 759-769.
  • DENG, H., YANG, L., TAO, G., DAI, J., 2009. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 166, 1514-1521.
  • EL-ABASSY, R. M., KAMMER, B., MATERNY, A., 2015. UV Raman spectroscopy for the characterization of strongly fluorescing beverages. LWT -Food Sci. Technol. 64, 56-60.
  • FENG, G., CHEN, P., LOU, H., 2015. Palladium catalysts supported on carbon–nitrogen composites for aqueous-phase hydrogenation of phenol. Catal. Sci. Technol. 5, 2300-2304.
  • FOO, K. Y., HAMEED, B. H., 2011. Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Eng. J. 173, 385-390.
  • GIL, M., PASIECZNA-PATKOWSKA, S., NOWICKI P., 2019. Application of microwave heating in the preparation of functionalized activated carbons. Adsorption 25, 327-336.
  • GIRAUDET, S., ZHU, Z., 2011. Hydrogen adsorption in nitrogen enriched ordered mesoporous carbons doped with nickel nanoparticles. Carbon 49, 398-405.
  • GOSCIANSKA, J., FATHY, M. A., ABOELENIN, R. M. M., 2017. Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons. J. Colloid Interface Sci. 505, 593-604.
  • GRZYBEK, T., KLINIK, J., MOTAK, M., PAPP, H., 2008. Nitrogen-promoted active carbons as catalytic supports: 2. The influence of Mn promotion on the structure and catalytic properties in SCR. Catal. Today 137, 235-241.
  • JUREWICZ, K., PIETRZAK, R., NOWICKI, P., WACHOWSKA, H., 2008. Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochim. Acta 53, 5469-5475.
  • KANTE, K., NIETO-DELGADO, C. J., RANGEL-MENDEZ, R., BANDOSZ, T. J., 2012. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. J. Hazard. Mater. 201-202,141-147.
  • KAZMIERCZAK-RAZNA, J., NOWICKI, P., PIETRZAK, R., 2015. The use of microwave radiation for obtaining activated carbons enriched in nitrogen. Powder Tech. 273, 71-75.
  • KAZMIERCZAK-RAZNA, J., PÓŁROLNICZAK, P., WASIŃSKI, K., NOWICKI, P., PIETRZAK, R., 2019. Comparison of physicochemical, sorption and electrochemical properties of nitrogen-doped activated carbons obtained with the use of microwave and conventional heating. Adsorption 25, 405-417.
  • KLINIK, J., SAMOJEDEN, B., GRZYBEK, T., SUPRUN, W., PAPP, H., GLASER, R., 2011. Nitrogen promoted activated carbons as DeNOx catalysts. 2. The influence of water on the catalytic performance. Catal. Today 176, 303-308.
  • NOWICKI, P., PIETRZAK, R., WACHOWSKA, H., 2008. Comparison of physicochemical properties of nitrogen-enriched activated carbons prepared by physical and chemical activation of brown coal. Energy Fuels 22, 4133-4138.
  • NOWICKI, P., PIETRZAK, R., DOBKIEWICZ, M., WACHOWSKA, H., 2010. The effect of ammoxidation process on NO2 sorption abilities of active carbons. Acta Phys. Pol. A 118, 493-499.
  • NOWICKI, P., SKIBISZEWSKA, P., PIETRZAK, R., 2013. NO2 removal on adsorbents prepared from coffee industry waste materials. Adsorption 19, 521-528.
  • NOWICKI, P., KAZMIERCZAK-RAZNA, J., SKIBISZEWSKA, P., WIŚNIEWSKA, M., NOSAL-WIERCIŃSKA, A., PIETRZAK, R., 2016. Production of activated carbons from biodegradable waste materials as an alternative way of their utilization. Adsorption 22 , 489-502.
  • NOWICKI, P., 2016. Effect of heat treatment on the physicochemical properties of nitrogen-enriched activated carbons. J. Therm. Anal. Calorim. 125, 1017-1024.
  • PLAZA, M. G., PEVIDA, C., ARENILLAS, A., RUBIERA, F., PIS, J. J., 2007. CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86, 2204-2212.
  • SAMOJEDEN, B., GRZYBEK, T., 2016. The influence of the promotion of N-modified activated carbonwith iron on NO removal by NH3-SCR (Selective catalytic reduction). Energy 116, 1484-1491.
  • WILSON, K., YANG, H., SEO, C. W., MARSHALL, W. E., 2006. Select metal adsorption by activated carbon made from peanut shells. Bioresource Technol. 97, 2266-2270.
  • YU,J., GUO, M., MUHAMMAD, F., WANG, A., ZHANG, F., LI Q., ZHU, G., 2014. One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol–urea–formaldehyde resin for CO2 capture. Carbon 69, 502-514.
  • ZAWADZKI, J., WISNIEWSKI, M., 2003. In situ characterization of interaction of ammonia with carbon surface in oxygen atmosphere. Carbon 41, 2257-2267.
  • ZENKEVICH, G., PIMENOV, A. I., SOKOLOVA, L. I., MAKAROV, V. G., 2002. Caramel standardization with respect for 5-hydroxymthylfurfurol. Pharm Chem J. 36, 51-54.
  • ZHU, J., YANG, J., DENG, B., 2010. Ethylenediamine-modified activated carbon for aqueous lead adsorption. Environ. Chem. Lett. 8, 277-282. http://www.pepsico.com/docs/album/annual-reports/pepsico-inc-2016-annual-report.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54663ec1-e71b-4ba7-92a6-da021c0e1c7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.