PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and selected properties of Fe–B coatings reinforced with B4C and Si particles produced by laser cladding using Yb:YAG disk laser

Identyfikatory
Warianty tytułu
PL
Mikrostruktura i wybrane właściwości warstw powierzchniowych Fe–B wzmacnianych cząstkami B4C i Si wytwarzanych metodą napawania laserowego za pomocą lasera dyskowego Yb: YAG
Języki publikacji
EN
Abstrakty
EN
The paper presents the study results of Fe–B coatings produced on C45 steel using laser cladding with powder technology. For this purpose, 5-axis CNC laser machining center equipped with Yb:YAG disk laser with a power rating of 1 kW and three streams powder feeding system. The powder that was used to produce Fe–B coatings was subsequently modified by the particles of boron carbide B4C and Si particles. The resulting powder mixture to the particles included 25 wt % respectively 20% B4C, 5% Si. During these studies a laser beam power of 600 W and variable scanning speed 600 mm/min, 800 mm/min and 1000 mm/min were used. Thickness and microhardness of coatings were investigated and relationship between these properties and microstructure of the applied production parameters were described. The microstructure of producing coatings was characterized by dendritic shape. It was found that boron carbide particles and silicon particles have significant influence on increase the microhardness of produced coatings. Coatings were produced using the prepared powder mixture allowed to obtain more than twice greater microhardness than in case of coatings produced using only the Fe–B powder. Phase composition was examined by XRD. Phases of Fe3B, Fe5Si3, Fe2Si and SiB6 were identified. The influence of B4C and Si particles in the mixture of powder on the corrosion resistance of produced coatings were discussed. It was found gradual reduction of corrosion resistance with decreasing scanning speed of laser beam. Less scanning speed result in less intense interaction of laser beam on the material. As a result of this, the remelting degree of powder material with steel substrate was smaller. The surface condition after corrosion tests were examined using a scanning electron microscope. This paper also shows a calculation related to the power density of the laser beam, interaction time of beam on material and fluence.
PL
W pracy przedstawiono wyniki badań wpływu laserowego napawania proszkami Fe–B wzmocnionymi cząstkami B4C i Si. Analizowano mikrostrukturę, mikrotwardość oraz odporność korozyjną wytworzonych powłok. Celem pracy było określenie wpływu cząstek B4C i Si na wybrane właściwości.
Rocznik
Strony
137--142
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
  • Institute of Materials Technology, Poznan University of Technology, Poznan
  • Institute of Materials Science and Engineering, Poznan University of Technology, Poznan
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Poznan
autor
  • Institute of Materials Technology, Poznan University of Technology, Poznan
Bibliografia
  • [1] Steen W. M., Mazumder J.: Laser material processing. Springer (2010).
  • [2] Davis J. R.: Handbook of thermal spray technology. USA, ASM International (2004).
  • [3] Ion J. C.: Laser processing of engineering materials: principles, procedure and industrial application. Butterworth-Heinemann (2005).
  • [4] Abboud J. H., Benyounis K. Y., Olabi A. G., Hashmi M. S. J.: Laser surface treatments of iron-based substrates for automotive application. J. Mater. Process. Technol. 1-3 (182) (2007) 427÷431.
  • [5] Lepski D., Brückner F.: Chapter: laser cladding. In: John Dowden (Ed.), The theory of laser materials processing, Springer series in materials science 119 (2009) 235÷279.
  • [6] Toyserkani E., Khajepour A., Corbin S. F.: Laser cladding. CRS Press (2004).
  • [7] Bartkowska A., Pertek A.: Laser production of B–Ni complex layers. Surface and Coatings Technology 248 (2014) 23÷29.
  • [8] Bartkowska A., Pertek A., Jankowiak M., Jóźwiak K.: Laser surface modification of borochromizing C45 steel. Arch. Metall. Mater. 1 (57) (2012) 211÷214.
  • [9] Afzal M., Ajmal M., Nusair Khan A., Hussain A., Akhter R.: Surface modification of air plasma spraying WC–12% Co cermet coating. Opt. Laser Technol. 56 (2014) 202÷206.
  • [10] Napadłek W.: Formation of technological surface layer of cylinder liner by ablative laser micro-working. Inżynieria Materiałowa 28 (2007) 702÷706.
  • [11] Młynarczak A., Borecki P., Bartkowski D.: Microstructure and corrosion resistance of chromed diffusion layers and chrome plated galvanic coatings, before and after CO2 laser modification. Inżynieria Materiałowa 2 (2013) 113÷115.
  • [12] Kusiński, J. Kąc, S. Kusiński, G.: Microstructure and properties of laser remelted iron base amorphous coatings. Inżynieria Materiałowa 31 (2010) 316÷319.
  • [13] Bartkowski, D. Młynarczyk, A. Piasecki, A. Dudziak, B.: The effect of steel substrate type on properties of surface layer produced from Cobased alloy powder by laser cladding. Inżynieria Materiałowa 34 (2013) 615÷618.
  • [14] Benyounis K. Y., Fakron O. M. A., Abboud J. H., Olabi A. G., Hashmi M. J. S.: Surface melting of nodular cast iron by Nd–YAG laser and TIG. J. Mater. Process. Technol. 1-2 (170) (2007) 127÷132.
  • [15] Yan H., Zhang P., Yu Z., Li C., Li R.: Development and characterization of laser surface cladding (Ti, W)C reinforced Ni–30Cu alloy composite coating on copper. Optics & Laser Technology 44 (2012) 1351÷1358.
  • [16] Farahmand P., Liu S., Zhang Z., Kovacevic R.: Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3. Ceramics International 40 (2014) 15421÷15438.
  • [17] Wang Y., Zhao S., Gao W., Zhou C., Liu F., Lin X.: Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content. J. Mater. Process. Technol. 214 (2014) 899÷905.
  • [18] Qiao H., Li Q.-T., Fu H.-G., Lei Y.-P.: Microstructure and microhardness of in situ synthesized TiC particles reinforced Fe-based alloy composite coating by laser cladding. Mat.-Wiss. u. Werkstofftech. 2 (45) (2014) DOI 10.1002/mawe.201400188.
  • [19] Bartkowski D., Młynarczak A., Piasecki A., Dudziak B., Gościański M., Bartkowska A.: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Optics & Laser Technology 68 (2015) 191÷201.
  • [20] Davis J. R.: Surface engineering for corrosion and wear resistance. USA, ASM International (2001).
  • [21] Nurminen J., Näkki J., Vuoristo P.: Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. Conf. Sci. Hard Mater. 27 (2) (2009) 472÷478.
  • [22] Verwimp J., Rombouts M., Geerinckx E., Motmans F.: Applications of laser cladded WC-based wear resistant coatings. Phys. Proc. A 12 (2011) 330÷337.
  • [23] Smurov I.: Laser cladding and laser assisted direct manufacturing. Surf. Coat. Technol. 202 (2008) 4496÷502.
  • [24] Guo C., Zhou J., Chen J., Zhao J., Yu Y., Zhou H.: High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC–Ni composite coating. Wear 7-8 (270) (2011) 492÷498.
  • [25] Zhou S., Dai X., Zheng H.: Microstructure and wear resistance of Febased WC coating by multi-track overlapping laser induction hybrid rapid cladding. Opt. Laser. Technol. 1 (44) (2012) 190÷197.
  • [26] Zhong M., Liu W., Yao K., Goussain J.-C., Mayer C., Becker A.: Microstructural evolution in high power laser cladding of Stellite 6WC layers. Surf. Coat. Technol. 2-3 (157) (2002) 128÷137.
  • [27] Jendrzejewski R., Navas C., Conde A., de Damborenea J. J., Śliwiński G.: Properties of laser-cladded stellite coatings prepared on preheated chromium steel. Mater. Des. 1 (29) (2008) 187÷192.
  • [28] Lin W. C., Chen C.: Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding. Surf. Coat. Technol. 14÷15 (200) (2006) 4557÷4563.
  • [29] Zieliński A., Smoleńska H., Serbiński W., Kończewicz W., Klimpel A.: Characterization of the Co-base layers obtained by laser cladding technique. J. Mater. Process. Technol. 164-165 (2005) 958÷963.
  • [30] Díaz E., Amado J. M., Montero J., Tobar M. J., Yáñez A.: Comparative study of Co-based alloys in repairing low Cr–Mo steel components by laser cladding. Phys. Proc. 39 (2012) 368÷375.
  • [31] Kathuria Y. P.: Laser-cladding process: a study using stationary and scanning CO2 laser beams. Surf. Coat. Technol. 1-3 (97) (1997) 442÷447.
  • [32] Paul C. P., Alemohammad H., Toyserkani E., Khajepour A., Corbin S.: Cladding of WC–12 Co on low carbon steel using a pulsed Nd:YAG laser. Mater. Sci. Eng. A 1-2 (464) (2007) 170÷176.
  • [33] Xu G., Kutsuna M., Liu Z., Sun L.: Characteristic behaviors of clad layer by a multi-layer laser cladding with powder mixture of Stellite-6 and tungsten carbide. Surf. Coat. Technol. 201 (6) (2006) 3385÷3392.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5465317e-d55b-4f56-8aaa-1b598f90618b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.