PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and selected physicochemical properties of hydroxyapatite and white clay composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyapatite (HAP) composites are very important biomaterials, which can be applied in various life areas. HAP composite with white clay was prepared and studied using X-ray diffraction, nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR), potentiometric titration, and quasi-elastic light scattering and zeta potential measurements. The values of pHpzc (point of zero charge) and pHIEP (isoelectric point) which characterize the electrical double layer depend strongly on the white clay addition to HAP. Comparative studies of hydroxyapatite, white clay and composite using nitrogen adsorption and FTIR methods showed that in most cases composite has the properties nearly intermediate between hydroxyapatite and white clay taken for the synthesis; however, certain non- additivity was observed analyzing the properties, due to precipitation of HAP onto clay particles that changes the HAP formation conditions in comparison to HAP formation alone. Thus, changes in the condition of the composite preparation allow one to control the properties of the final materials.
Słowa kluczowe
Rocznik
Strony
1475--1483
Opis fizyczny
Bibliogr. 33 poz., tab., wykr., wz.
Twórcy
autor
  • Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, PL-20031 Lublin, Poland
autor
  • Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, PL-20031 Lublin, Poland
  • Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine
  • Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine
Bibliografia
  • ADAMSON, A.W., GAST, A.P., 1997. Physical chemistry of surface, Sixth edition. Wiley, New York.
  • BERGAYA, F., THENG, B.K.G., LAGALY, G. (Eds.), 2006. Developments in clay science. Handbook of Clay Science. Elsevier, Amsterdam. ISBN: 9780080441832, 9780080457635.
  • DEAN-MO, L., 1996. Fabrication and characterization of porous hydroxyapatite granules. Biomaterials 17, 1955-1957.
  • DOROZHKIN, S.V., 2010. Nanosized and nanocrystalline calcium orthophosphates. Acta. Biomater. 6, 715-735.
  • EBERL, D.D., FARMER, V.C., BARRER, R.M., 1984. Clay mineral formation and transformation in rocks and soils. Phil. Trans. R. Soc. Lond. A 311, 241–257.
  • EHLERS, E.G., BLATT, H., 1982. Petrology, igneous, sedimentary, and metamorphic. W.H. Freeman & Co, San Francisco.
  • GREGG, S.J., SING, K.S.W., 1982. Adsorption, surface area and porosity. Academic Press, London.
  • GUGGENHEIM, S., 1995. Definition of clay and clay mineral: Joints report of the AIPEA nomenclature and CMS. Nomenclature Committees. Clay Minerals.
  • GUN'KO, V.M., 2014. Composite materials: textural characteristics. Appl. Surf. Sci. 307, 444–454.
  • GUZMAN, V.C., PINA, B.C., MUNGUIA, N., 2005. Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes. Rev. Mex. Fis. 51, 284 -293.
  • HILLIER, S. 2006. Formation and alteration of clay materials. In: Reeves, G.M. & Cripps, J.C. (Eds) Clays Materials Used in Construction. Geological Society, London, Engineering Geology Special Publications, 21, 29–71.
  • ITO, A., WAGAI, R., 2017. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Scientific Data 4, Article number 170103.
  • JANUSZ, W., SKWAREK, E., 2016. Study of sorption processes of strontium on the synthetic hydroxyapatite. Adsorption 22, 697-706.
  • KENNE DEDZO, G., DETELLIER, C., 2017. Characterization and applications of kaolinite robustly grafted by an ionic liquid with naphthyl functionality. Materials 10, 1006-1018.
  • MIDDLETON, G.V., CHURCH, M.J., CONIGLIO, M., HARDIE, L.A., LONGSTAFFE, F.J. (Eds.), 2003. Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht.
  • MIRANDA-TREVINO, J.C., COLES, C.A., 2003. Kaolinite properties structure and influence of metal retention on pH. Appl. Clay Sci. 23, 133-139.
  • MISHRA, G., DASH, B., PANDEY, S., 2018. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186.
  • MONTES-HERNANDEZ, G., FINDLING, N., RENARD, F., AUZENDE, A.-L., 2014. Precipitation of ordered dolomite via simultaneous dissolution of calcite and magnesite: New experimental insights into an old precipitation enigma. Cryst. Growth Des. 14, 671-677.
  • MOSTAFA, N.Y., 2005. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 94, 333-341.
  • MURUGAN, R., RAMAKRISHNA, S., 2007. Development of cell-responsive nanophase hydroxyapatite for tissue engineering. Amer. J. Biochem. Biotechn. 3, 118-124.
  • MURRAY, H.H., 1991. Overview - clay mineral applications. Appl. Clay Sci. 5, 379-395.
  • PROVENCHER, S.W., 1982. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comp. Phys. Comm. 27, 213-227.
  • RAPACZ-KMITA, A., PALUSZKIEWICZ, C., SLÓSARCZYK, A., PASZKIEWICZ, Z., 2005. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J. Mol. Struct. 744-747, 653-659
  • RHEE, S.H., 2002. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23, 1147-1152.
  • RIMAN, R.E., SUCHANEK, W.L., BYRAPPA, K., WEI CHEN, C., SHUK, P., OAKES, C.S., 2002. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 151, 393-402.
  • SKWAREK, E., JANUSZ, W., STERNIK, D., 2017. The influence of the hydroxyapatite synthesis method on the electrochemical, surface and adsorption properties of hydroxyapatite. Adsorp. Sci. Technol. 35, 507-518.
  • SKWAREK, E., JANUSZ, W., 2016. Adsorption of Cd (II) ions at the hydroxyapatite/electrolyte solution interface. Sep. Sci. Technol. 51, 11-21.
  • SOBCZAK, A., KOWALSKI, Z., WZOREK, Z., 2009. Preparation of hydroxyapatite from animal bones. Acta Bioeng. Biomech. 11, 23-28.
  • SOPYAN, I., SINGH, R., HAMDI, M., 2008. Synthesis of nano sized hydroxyapatite powder using sol-gel technique and its conversion to dense and porous bodies. Indian J. Chem. 47, 1626–1631.
  • SUZUKI, S., OHGAKI, M., ICHIYANAGI, M., OZAWA, M., 1998. Preparation of needle-like hydroxyapatite. J. Mater. Sci. Lett. 17, 381-383.
  • SZYMAŃSKI, A., 1991. Biomineralisation and biomaterials. State Publishing House Warsaw, Poland.
  • ZHANG, J., ZHOU, C.H., PETIT, S., ZHANG, H., 2019. Hectorite: Synthesis, modification, assembly and applications. Appl. Clay Sci. 177, 114–138.
  • ZHUANG, G., ZHANG, Z., JABER, M., 2019. Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Appl. Clay Sci. 177, 63–81.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-546391f1-fff4-4119-b921-d26357301613
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.