PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Attenuation properties of health protection accessories during mobile phone exposure on the human head phantom

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Właściwości tłumiące akcesoriów ochrony zdrowia podczas ekspozycji telefonu komórkowego na fantom głowy człowieka
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to measure and evaluate the attenuation of the electromagnetic field using personal protective textile accessories within three frequencies: 825 MHz, 1760 MHz and 2109 MHz. Measurements on the human head phantom were performed 1. without a protective accessory, 2. with the protective cap containing the silver fibres, 3. with the visor cap containing the silver fibres, 4. with an ordinary aluminium foil, 5. with the classic cap and 6. with the visor cap without any protective elements. The best shielding effectiveness was provided by the protective cap containing a silver, which covered almost the entire area of the head. It provided the highest attenuation for all frequencies, considering the average from each side (left, right, top of the head): 10.85 ± 1.44 dB (825 MHz), 14.55 ± 4.30 dB (1760 MHz) and 12.45 ± 4.88 dB (2109 MHz). The highest value for particular side of the head was observed for the visor cap containing a silver 19.25 ± 6.95 dB for the top of the head (1760 MHz). For the classic caps, the attenuation was lower than 1dB.
PL
Celem pracy był pomiar i ocena tłumienia pola elektromagnetycznego za pomocą tekstylnych akcesoriów ochrony osobistej w zakresie trzech częstotliwości: 825 MHz, 1760 MHz i 2109 MHz. Pomiary na fantomie głowy ludzkiej wykonano 1. bez akcesorium ochronnego, 2. z nakładką ochronną zawierającą włókna srebrne, 3. z nakładką przyłbicy zawierającą włókna srebrne, 4. ze zwykłą folią aluminiową, 5. z klasyczną i 6. z nakładką z daszkiem bez żadnych elementów ochronnych. Najlepszą skuteczność ekranowania zapewniała nasadka ochronna zawierająca srebro, która pokrywała niemal całą powierzchnię głowy. Zapewniał najwyższe tłumienie dla wszystkich częstotliwości, biorąc pod uwagę średnią z każdej strony (lewa, prawa, czubek głowy): 10,85 ± 1,44 dB (825 MHz), 14,55 ± 4,30 dB (1760 MHz) i 12,45 ± 4,88 dB (2109 MHz). Najwyższą wartość dla poszczególnych stron głowy zaobserwowano dla nasadki przyłbicy zawierającej srebro 19,25 ± 6,95 dB dla czubka głowy (1760 MHz). Dla klasycznych czapek tłumienie było mniejsze niż 1dB.
Rocznik
Strony
63--68
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Jessenius Faculty of Medicine in Martin,Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
autor
  • Jessenius Faculty of Medicine in Martin,Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Public Health, Mala Hora 4, 036 01 Martin, Slovak Republic
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Public Health, Mala Hora 4, 036 01 Martin, Slovak Republic
  • Jessenius Faculty of Medicine in Martin,Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
  • Jessenius Faculty of Medicine in Martin,Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
autor
  • Jessenius Faculty of Medicine in Martin,Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
Bibliografia
  • [1] Pall M.L., Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression, Journal of Chemical Neuroanatomy, 75 (2016), Part B, 43-51, doi: 10.1016/j.jchemneu.2015.08.001.
  • [2] Saliev T., Begimbetova D., Masoud A.R., Matkarimov B., Biological effects of non-ionizing electromagnetic fields: Two sides of a coin, Progress in Biophysics and Molecular Biology, 141 (2019), 25-36, doi: 10.1016/j.pbiomolbio.2018.07.009.
  • [3] Barabas J., Radil R., Malikova I., Modification of S. cerevisiae Growth Dynamics Using Low Frequency Electromagnetic Fields in the 1-2 kHz Range, BioMed Research International, 2015 (2015), doi: 10.1155/2015/694713 .
  • [4] Radil R., Barabas J., Janousek L., Bereta M., Frequency Dependent Alterations of S. Cerevisiae Proliferation Due to LF EMF Exposure, Advances in Electrical and Electronic Engineering, 18 (2020), nr 5, 99-106, doi: 10.15598/aeee.v18i2.3461.
  • [5] Belyaev I., Biophysical Mechanisms for Nonthermal Microwave Effects. In: Markov, MS, Ed., Electromagnetic Fields in Biology and Medicine, CRC Press, Boca Raton, (2015), 49-68, doi: 10.1201/b18148-6.
  • [6] Aerts S., Wiart J., Martens L., Joseph W., Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure, Environmental Research, 161 (2018), 136-143, doi: 10.1016/j.envres.2017.11.003.
  • [7] Misek J., Laukova T., Kohan M., Veternik M., Jakusova V., Jakus J., Measurement of low-level radiofrequency electromagnetic fields in the human environment, Acta Medica Martiniana, 18 (2018), nr 2, 27-33, doi: 10.2478/acm-2018-0010.
  • [8] Sagar S., Adem S.M., Struchen B., Loughran S.P., Brunjes M.E., Arangua L., Dalvie M.A., Croft R.J., Jerrett M., Moskowitz J.M., Kuo T., Roosli M., Comparison of radiofrequency electromagnetic field exposure levels in different everyday microenvironments in an international context, Environment International, 114 (2018), 297-306, doi: 10.1016/j.envint.2018.02.036.
  • [9] Gombarska D., Psenakova Z., Carnecka L., Laboratory measurements of electromagnetic field inside motorcycle helmet with installed bluetooth communicator, Przegląd Elektrotechniczny, 97 (2021), nr 6, 56-59, doi:10.15199/48.2021.06.10.
  • [10] Psenakova Z., Gombarska D., Smetana M., Judakova Z., High-frequency electromagnetic field measurement inside the cars with modern embedded wireless technologies, Przegląd Elektrotechniczny, 97 (2021), nr 6, 52-55, doi: 10.15199/48.2021.06.09.
  • [11] Mohamed F.A., Ahmed A.A., El-Kafoury B.M.A., Lasheen N.N., Study of the Cardiovascular Effects of Exposure to Electromagnetic Field, Life Science Journal, 8 (2011), nr 1, 260-274, doi: 10.7537/marslsj080111.33.
  • [12] Misek J., Belyaev I., Jakusova V., Tonhajzerova I., Barabas J., Jakus J., Heart rate variability affected by radiofrequency electromagnetic field in adolescent students, Bioelectromagnetics, 39 (2018), nr 4, 277-288, doi: 10.1002/bem.22115.
  • [13] Hardell L., Carlber M., Koppel T., Nordstrom M., Hedendahl L.K., Central nervous system lymphoma and radiofrequency radiation - A case report and incidence data in the Swedish Cancer Register on non-Hodgkin lymphoma, Medical Hypotheses, 144 (2020), doi: 10.1016/j.mehy.2020.110052.
  • [14] Pall, M.L., Wi-Fi is an important threat to human health, Environmental Research, 164 (2018), 405-416, doi: 10.1016/j.envres.2018.01.035.
  • [15] Reiser H., Dimpfel W., Schober F., The influence of electromagnetic fields on human brain activity, European Journal of Medical Research, 1 (1995), nr 1, 27-32.
  • [16] Panagopoulos D.J., Johansson O., Carlo G.L., Real versus simulated mobile phone exposures in experimental studies, BioMed Research International, 2015 (2015), nr 4, 1-8, doi: 10.1155/2015/607053.
  • [17] Moradi M., Naghdi N., Hemmati H., Asadi-Samani M., Bahmani M., Effect of ultra high frequency mobile phone radiation on human health, Electronic Physician, 8 (2016), nr 5, 2452-2457, doi: 10.19082/2542.
  • [18] Sommer A. M., Grote K., Reinhardt T., Streckert J., Hansen V., Lerchl A., Effects of Radiofrequency Electromagnetic Fields (UMTS) on Reproduction and Development of Mice: A Multi-generation Study, Radiation Research, 171 (2009), nr 1, 89–95, doi: 10.1667/RR1460.1.
  • [19] Shirai T., Wang J., Kawabe M., Wake K., Watanabe S.I., Takahashi S., Fujiwara O., No adverse effects detected for simultaneous whole-body exposure to multiple-frequency radiofrequency electromagnetic fields for rats in the intrauterine and pre- and post-weaning periods, Journal of Radiation Research, 58. (2017), nr 1, 48-58, doi: 10.1093/jrr/rrw085
  • [20] Klose M., Grote K., Spathmann O., Streckert J., Clemens M., Hansen V.W., Lerch A., Effects of Early-Onset Radiofrequency Electromagnetic Field Exposure (GSM 900 MHz) on Behavior and Memory in Rats, Radiation Research, 182 (2014), nr 4, 435–447, doi: 10.1667/RR13695.1.
  • [21] IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans, Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. International Agency for Research on Cancer: Lyon, France, 102 (2013).
  • [22] Subhankar M., Kunal S., Pulak D., Mrinal S., Textiles in electromagnetic radiation protection, Journal of Safety Engineering, 2 (2013), nr 2, 11-19, doi: 10.5923/j.safety.20130202.01.
  • [23] Neruda M., Vojtech L., Electromagnetic Shielding Effectiveness of Woven Fabrics with High Electrical Conductivity: Complete Derivation and Verification of Analytical Model, Materials, 11 (2018), nr 9, doi: 10.3390/ma11091657.
  • [24] Psenakova Z., The influence of the electromagnetic field on the human body with a focus on the human head, PhD thesis, 2007, University of Zilina.
  • [25] Decree no. 534/2007 Coll. Decree on details of requirements for sources of electromagnetic radiation and limits for the exposure of the general population to electromagnetic radiation in the environment. Slovak Republic: Ministry of Health of the Slovak Republic, 2007.
  • [26] ICNIRP, Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz), Health Physics, 118 (2020), nr 5, 483-524, doi: 10.1097/HP.0000000000001210.
  • [27] Januszkiewicz Ł., Analysis of Shielding Properties of Head Covers Made of Conductive Materials in Application to 5G Wireless Systems, Energies, 14 (2021), nr 21, 1-26, doi: 10.3390/ en14217004.
  • [28] Panagopoulos D.J., Chrousos G.P., Shielding methods and products against man-made Electromagnetic Fields: Protection versus risk, Science of The Total Environment, 667 (2019), nr 2, 255-262, doi: doi.org/10.1016/j.scitotenv.2019.02.344.
  • [29] Palanisamy S., Tunakova V., Militky J., Fiber-based structures for electromagnetic shielding – comparison of different materials and textile structures, Textile Research Journal, 88 (2018), nr 17, 1-21, doi: doi.org/10.1177/0040517517715085.
  • [30] Buckus R., Strukcinskiene B., Raistenskis J., Stukas R., Modelling and assessment of the electric field strength caused by mobile phone to the human head, Vojnosanitetski Pregled, 73 (2016), nr 6, 538-543, doi: 10.2298/vsp141221044b.
  • [31] Safarova V., Militky J., Electromagnetic Field Shielding Fabrics with Increased Comfort Properties, Advanced Materials Research, 677 (2013), 161-168, doi: 10.4028/www.scientific.net/AMR.677.161.
  • [32] Brzenski S., Rybicki T., Karbownik I., Malinovska G., Sledzinska K., Textile materials for electromagnetic field shielding made with the use of nano- and microtechnology, Central European Journal of Physics, 10 (2012), nr 5, 1190-1196, doi: 10.2478/s11534-012-0094-z.
  • [33] Jakubas A., Łada-Tondyra E., Suchecki Ł., Makowka M., Simulations and tests of the effectiveness of electromagnetic field shielding by shields made of recycled materials, Przegląd Elektrotechniczny, 98 (2022), nr 2, 152-155, doi: 10.15199/48.2022.02.35.
  • [34] Łada-Tondyra E., Jakubas A., Figiel M., The research and the analysis of electromagnetic field shielding properties of the textile materials with an electroconductive coating, Przegląd Elektrotechniczny, 97 (2021), nr 12, 133-136, doi: 10.15199/48.2021.12.26.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-545ea539-fc57-4c8e-b40c-6c49474ee1f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.