PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a cryogenic condenser and computation of its heat transfer eflciency based on liquefaction of nitrogen gas

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The typical cryogenic condenser described here transfers the refrigerating effect from its inner side to its outer side through the wall of the condenser. The separate close refrigeration cycle operates on Reverse Stirling Cycle using hydrogen or helium as working fluid. The nitrogen gas gets liquefied when it comes in contact with the cold outer surface of the condenser. We have successfully developed a cryogenic condenser using copper of electrolytic grade for a liquefaction duty of 10 liters of liquid nitrogen per hour. Condenser effectiveness is evaluated by assembling it in Cryogenerator model, ZIF-1002 and by noting the liquefaction rate. Both the results are satisfactory. Selection of material, fabrication, testing of the condenser developed for a Cryogenerator have been described in the paper to assess its suitability for a Cryogenerator based on Reverse Stirling cycle liquefier.
Rocznik
Strony
291--296
Opis fizyczny
Bibliogr. 30 poz., fot. kolor., rys.
Twórcy
  • Centre for Rural & Cryogenic Technologies, Jadavpur University, Kolkata 700032, India
  • Centre for Rural & Cryogenic Technologies, Jadavpur University, Kolkata 700032, India
  • Centre for Rural & Cryogenic Technologies, Jadavpur University, Kolkata 700032, India
Bibliografia
  • [1] Kotz J. C., Treichel P.: Chemistry and Chemical Reactivity, 3rd edition. Harcourt Brace & company: Orlando, USA, 1996.
  • [2] Smith A. R., Klosek J.: A review of air separation technologies and their integration with energy conversion processes. Fuel. Process. Technol., 70, 2001, 115-134.
  • [3] Cristescu I., Cristescu Ioana., Zamfirache M., Brad S.: Determination of heat-exchange coeflcients at hydrogen condensation in various geometry of condensers. Romanian Reports in Physics, 52 (3-4), 2000, 333-343.
  • [4] Ameen A., Mollik S. A., Mahmud K., Quadir G.A., Seetharamu K. N.: Numerical analysis and experimental investigation into the performance of a wire-on-tube condenser of a retrofitted refrigerator. Int. J. Refrigeration, 29, 2006, 495-504.
  • [5] Mudali U. K., Raju V. R., Dayal R. K., Khatak H. S.: Pitting induced failure of austenitic cryogenic condenser coil for acetone service. Eng. Failure .Analysis, 10, 2003, 37-44.
  • [6] Wu Y. Y., Chen L. F., and Wu T. H.: Chapter-199-A new type of condenser-evaporator safely operated in large air separation plant, Proc. Twentieth. Int. Cryogenic Eng. Conf. (ICEC 20), Beijing, China. Elsevier Ltd., 2005, 841-844.
  • [7] Wang C., Scurlock R. G.: Improvement in performance of cryocoolers as condensers. Cryogenics, 48, 2008, 169-171.
  • [8] Post A. H., Belmont Jr., and Hogan W. H.: Cryogenic condenser with liquid level sensing and control, US Patent, Patent no. 3,340,699, 12 Sept 1967.
  • [9] Messer G., Schulze W.: A cryopumping system with two cryogenic condensers for Molecular beam experiments. Cryogenics, 10(2), 1970, 161-163.
  • [10] Cristescu I., Cristescu Ioana., Zamfirache M.: Determination of heat transfer coeflcients for hydrogen condensation in condensers of various geometries. Int. J. Therm. Sci., 39, 2000, 659-666.
  • [11] Lyakishev N. P., Alymov M. I., Dobatkin S. V.: Bulk constructional nanomaterials. metally, 3, 2003,3.
  • [12] David E.: Materials for Cryogenics applications, Proc.12th Inter. Sci. Conf. Achievements in Mechanical & Materials Eng., AMME’ 2003, Gliwice-Cracow-Zakopane, Poland, December 07- 10, 2003.
  • [13] Haas V., Cho M., Ishii H., Inoue A.: Behavior of quasi crystalreinforced AL94CR1MN3CU2 under fatigue conditions. Nanostruct. Mater, 12 (5-8), 1999, 829.
  • [14] McClintock P. V. E., Meredith D. J., Wigmore J. K.: Matter at low temperature, Blackie & Son, Ltd. Glasgow, UK, 536: 56, 1984.
  • [15] McClintock P. V. E., Meredith D. J., Wigmore J. K.: Low temperature Physics, Blackie & Son, Ltd., 536: 56, 1992.
  • [16] Depoy S. W.: Subzero Treatment of High Speed Steel. The Iron Age, 13 April 1994, 52.
  • [17] Summers L. T.: Editor Advances in Cryogenics Engineering- Materials, Plenum Press. Vol.42A and 42B, 1995.
  • [18] Reed R. P., Mikesell R. P.: (eds.), Compilation of Low Temperature Mechanical Properties of Copper and Selected Copper Alloys, NSB Monograph 101, National Bureau of Standards, 1967.
  • [19] Simon N. J., Drexler E. S., and Reed R. P.: Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph 177, National Institute of Standards and Technology, Sponsored by International Copper Association, Ltd. 708 Third Avenue, New York, NY 10017, 1992.
  • [20] Timmerhaus K. D., Flynn T. M.: Cryogenic Process Engineering, Plenum Press, New York and London, 1989.
  • [21] Woodcraft A. L.: Recommended values for the thermal conductivity of aluminum of different purities in the cryogenic to room temperature range, and a comparison with copper. Cryogenics, 45(9), 2005, 626-636.
  • [22] Suomi M., Anderson A. C., Holmstroem B.: Heat transfer below 0.2ºK. Physica, 38, 1968, 67-80.
  • [23] Gloos K., Mitschka C., Pobell F., Smeibidl P.: Thermal conductivity of normal and superconducting metals. Cryogenics, 30, 1990, 14-18.
  • [24] Risegari L., Barucci M.,Olivieri E., Pasca E.,Ventura G.:Measurement of the thermal conductivity of copper samples between 30 and 150 m K. Cryogenics, 44, 2004, 875-878.
  • [25] Arnaboldi C., Avignone F. T., Beeman J., Barucci M., Balata M., Brofferio C. et al.: CUORE: a cryogenic underground observatory for rare events. Nucl. Instrum. Methods Phys. Res. Sect. A., 518(3), 2004, 775-798.
  • [26] Astone P.: Resonant mass detectors: present status. Class. Quantum Grav., 19, 2002, 1227- 1235.
  • [27] Operation manual for low temperature installation for gas liquefaction-ZIF-1002 Moscow, Russia.
  • [28] Rohde H., Katic J., Paschold R.: ESAB pulsed gas shielded metal arc brazing of surface coated sheets, Svetsaren, publisher ESAB, 55 (3), 2000, 1-36.
  • [29] Gartner W.: MIG brazing of galvanized light-gauge sheets, Fronius, http://www.fronius.Com/weld. 1999.
  • [30] Corsepius H.W.: Nondestructive testing ofmaterials using ultrasonics, introduction to basics. Special Issue 218. Krautkramer GmbH & Co., 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-545d4659-6340-4ab3-9cf5-953939870548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.