PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Common fixed points for four maps in ordered partial metric spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present some common fixed point theorems for four maps in partially ordered partial metric spacess. Our results generalize the main theorems of Abbas, Nazir and Radenovic [1].
Rocznik
Tom
Strony
15--31
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • Université de Sousse Institut Supérieur d'Informatique et des Technologies de Communication de Hammam Sousse Route GP1-4011, H. Sousse, Tunisie
Bibliografia
  • [1] Abbas M., Nazir T., Radenovic S., Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett., 24(2011), 1520-1526.
  • [2] Abbas M., Nazir T., Romaguera S., Fixed point results for generalized cyclic contraction mappings in partial metric spaces, RACSAM, doi:10. 1007/s13398-011-0051-5.
  • [3] Agarwal R.P., El-Gebeily R.P., O’Regan D., Generalized contractions in partially ordered metric spaces, Appl. Anal., 87(2008), 109-116.
  • [4] Altun I., Simsek H., Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory and Applications, vol. 2010, Article ID 621469, 17 pages, 2010.
  • [5] Altun I., Erduran A., Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., vol. 2011, Article ID 508730, 10 pages, 2011.
  • [6] Altun I., Sola F., Simsek H., Generalized contractions on partial metric spaces, Topology and its Applications, 157(18)(2010), 2778-2785.
  • [7] Aydi H., Coincidence and common fixed point results for contraction type maps in partially ordered metric spaces, Int. Journal of Math. Analysis, 5(13) (2011), 631-642.
  • [8] Aydi H., Nashine H.K., Samet B., Yazidi H., Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations, Nonlinear Anal., 74(17)(2011), 6814-6825.
  • [9] Aydi H., Some fixed point results in ordered partial metric spaces, J. Nonlinear Sciences. Appl., 4(3)(2011), 210-217.
  • [10] Aydi H., Some coupled fixed point results on partial metric spaces, International J. Math. Math. Sciences (2011), Article ID 647091, 11 pages doi:10. 1155/2011/647091.
  • [11] Aydi H., Fixed point results for weakly contractive mappings in ordered partial metric spaces, J. Advanced Math. Studies, 4(2)(2011), 1-12.
  • [12] Aydi H., Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, Journal of Nonlinear Analysis and Optimization: Theory and Applications, 2(2)(2011), 33-48.
  • [13] Aydi H., Common fixed point results for mappings satisfying (ψ,φ)-weak contractions in ordered partial metric spaces, International J. Mathematics and Statistics, 12(2)(2012), 53-64.
  • [14] Aydi H., A common fixed point result by altering distances involving a contractive condition of integral type in partial metric spaces, Demonstratio Mathematical 46(1/2)(2013), ....
  • [15] Aydi H., Karapinar E., Shatanawi W., Coupled fixed point results for (0, p)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl., 62(2011), 4449-4460.
  • [16] Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3(1922), 133-181 (French).
  • [17] Beg I., Butt A.R., Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal., 71(2009), 3699-3704.
  • [18] Ciric L.J., Samet B., Aydi H., Vetro C., Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218(2011), 2398-2406.
  • [19] Berinde V., Iterative Approximation of Fixed Points, Second edition, Lecture Notes in Mathematics, 1912, Springer, Berlin, 2007.
  • [20] Bhashkar T.G., Lakshmikantham V., Fixed point theorems in partially ordered cone metric spaces and applications, Nonlinear Anal., 65(7)(2006), 825-832.
  • [21] Doric D., Common fixed point for generalized (ψ,φ)-weak contractions, Appl. Math. Lett., 22(2009), 1896-1900.
  • [22] Jungck G., Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9(1986), 771-779.
  • [23] Harjani J., Sadarangani K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71(2009), 3403-3410.
  • [24] Lakshmikantham V., Ćirić L.J., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(2009), 4341-4349.
  • [25] Matthews S.G., Partial metric topology, in Proceedings of the 8-th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences, 728(1994), 183-197.
  • [26] Nashine H.K., Samet B., Fixed point results for mappings satisfying (ψ,φ)-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., 74(2011), 2201-2209.
  • [27] Nashine H.K., Samet B., Vetro C., Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. Comput. Modelling, 54(2011), 712-720.
  • [28] Nieto J.J., Rodriguez-Lopez R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.
  • [29] Nieto J.J., Pouso R.L., Ródriguez-López R., Fixed point theorems in parti- ally ordered sets, Proc. Amer. Soc., 132(8)(2007), 2505-2517.
  • [30] O’Neill S.J., Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, http://www.dcs.warwick.ac.uk/reports/283.html, 1995.
  • [31] Oltra S., Valero O., Banach’s fixed point theorem for partial metric spaces, Rendiconti dell’Istituto di Matematica dell’Universita di Trieste, 36 (1-2)(2004), 17-26.
  • [32] O’Regan D., Petrusel A., Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., 341(2008), 1241-1252.
  • [33] Popescu O., Fixed points for (ψ,φ)-weak contractions, Appl. Math. Lett., 24(2011), 1-4.
  • [34] Ran A.C.M., Reurings M.C.B., A fixed point theorem in partially ordered sets and some applications to metrix equations, Proc. Amer. Math. Soc., 132(5)(2004), 1435-1443.
  • [35] Romaguera S., A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl, Volume 2010, Article ID 493298, 6 pages, 2010.
  • [36] Romaguera S., Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Applied General Topology, 12(2)(2011), 213-220.
  • [37] Romaguera S., Fixed point theorems for generalized contractions on partial metric spaces, Topology and its Applications, 159(1)(2011), 194-199.
  • [38] Rus I.A., Petrusel A., Petrusel G., Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
  • [39] Rus A., Fixed point theory in partial metric spaces, Analele Univ. de Vest Timsoara, Seria Matematica Informatica XLVI, 2(2008), 149-160.
  • [40]Samet S., Rajović M., Lazovic R., Stoiljković R., Common fixed point results for nonlinear contractions in ordered partial metric spaces, Fixed Point Theory Appl., 2011. 2011:71.
  • [41] Shatanawi W., Samet B., Abbas M., Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Modelling, (2011), doi:10.1016/j.mcm.2011.08.042.
  • [42] Schellekens M.P., The correspondence between partial metrics and semivaluations, Theoretical Computer Science, 315(2004), 135-149.
  • [43] Valero O., On Banach fixed point theorems for partial metric spaces, Applied General Topology, 6(2)(2005), 229-240.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-545b0d4f-22f4-4295-b590-b51a36b8fe61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.