PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remarks on sequence-convering closed maps

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we prove that each sequence-covering closed map on spaces with point-countable weak bases is 1-sequence-covering (or weak-open).
Rocznik
Tom
Strony
161--165
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Department of Mathematics Da Nang University, Vietnam
Bibliografia
  • [1] An T.V., Tuyen L.Q., Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolin., 49(3)(2008), 477-484.
  • [2] An T.V., Tuyen L.Q., On п-images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, 64(4)(2012), 297-302.
  • [3] Arhangel’skii A.V., Mappings and spaces, Russian Math. Surveys, 21(4)(1966), 115-162.
  • [4] Engelking R., General Topology (revised and completed edition), Helder-mann Verlag, Berlin 1989.
  • [5] Franklin S.P., Spaces in which sequences suffice, Fund. Math., 57(1965), 107-115.
  • [6] Lin F.C., Lin S., On sequence-covering boundary compact maps of metric spaces, Adv. Math. (China), 39(1)(2010), 71-78.
  • [7] Lin F.C., Lin S., Sequence-coveringmaps on generalized metric spaces, in: arXiv: 1106.3806..
  • [8] Lin S., On sequence-covering s-mappings, Adv. Math. (China), 25(6)(1996), 548-551.
  • [9] Lin S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002.
  • [10] Lin S., Tanaka Y., Point-countable k-networks, closed maps, and related results, Topology Appl., 59(1994), 79-86.
  • [11] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl., 109(2001), 301-314.
  • [12] Liu C., On weak bases, Topology Appl., 150(2005), 91-99.
  • [13] Siwiec F., Sequence-covering and countably bi-quotient maps, General Topology Appl., 1(1971), 143-154.
  • [14] Siwiec F., On defining a space by a weak base, Pacific J. Math., 52(1974), 233-245.
  • [15] Tuyen L.Q., A new characterization of spaces with locally countable sn-networks, Mat. Vesnik, 65(1)(2013), 8-13.
  • [16] Tuyen L.Q., Some characterizations of spaces with locally countable net-works, Mat. Vesnik, (2012), to appear.
  • [17] Tuyen L.Q., Remarks on sequence-covering maps, Comment. Math. Univ. Carolin., 53(4)(2012), 645-650.
  • [18] Xia S., Characterizations of certain g-first countable spaces, Adv. Math., 29(2000), 61-64.
  • [19] Yan P., Lin S., Point-countable k-networks, cs*-network and a4-spaces, Topology Proc., 24(1999), 345-354.
  • [20] Yan P.F., Lin S., Jiang S.L., Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica, 47(1)(2004), 87-90.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-545a7168-df99-4332-a3e1-c70fb2b47b70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.