PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Urban biodiversity, ecosystem services and the effects of climate change in urban environments: a bibliometric review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bioróżnorodność miejska, usługi ekosystemów i skutki zmian klimatu w środowiskach miejskich: przegląd bibliometryczny
Języki publikacji
EN
Abstrakty
EN
Urban biodiversity, although often underestimated, plays a key role in providing vital ecosystem services such as climate regulation, air purification and others. However, anthropogenic pressures, including rapid urbanization and land use changes, exacerbate the effects of climate change, and seriously threaten these services. This bibliometric review aims to analyze research conducted between 1990 and 2024 on urban biodiversity assessment and management, ecosystem services, and the impacts of climate change. The Publish or Perish 8 (PoPe) software is used because of its information and its flexibility of use for the different analyses, which are processed with the Excel 2013 software. Out of 1,644 publications with PoPe, 345 are select after clearance and subsequently analyze. The year 2017 marks the most prolific year of publication of articles for the mixing of concepts: “biodiversity”, “ecosystem services”, “urban dynamics” and “climate change”. From 1990 to 1996, we noted a low rate of articles according to these concepts throughout the world and it was in 2019 and 2020 that scientific research gained momentum in the Asian continent (128 publications) and more precisely in China (22.33 %) and India (7.86 %). Through these publications (articles, books, conferences and others), the publisher having been cited the most is Elsevier (17,359 citations). From the sampled publications, researchers in the assessment and management of biodiversity (33.41 %), the mapping and modeling of ecosystem services (27.27 %) as well as the dynamics of land use in urban areas (21.13 %) and the impacts of climate change (18.19 %) used various methods. These different methodological approaches were chosen based on the objective and year of the research, the availability of resources and the reliability of the results. This review has a capital importance in the sense that it provides a range of information regarding urban ecology.
PL
Miejska różnorodność biologiczna, choć często niedoceniana, odgrywa kluczową rolę w zapewnianiu istotnych usług ekosystemowych, takich jak regulacja klimatu, oczyszczanie powietrza i inne. Jednak presja antropogeniczna, w tym szybka urbanizacja i zmiany użytkowania gruntów, nasilają skutki zmian klimatu i poważnie zagrażają tym usługom. Niniejszy przegląd bibliometryczny ma na celu analizę badań przeprowadzonych w latach 1990–2024 w zakresie oceny i zarządzania różnorodnością biologiczną w miastach, usług ekosystemowych oraz wpływu zmian klimatu. Oprogramowanie Publish or Perish 8 (PoPe) zostało wykorzystane ze względu na swoje możliwości analityczne i elastyczność, a dane przetwarzano przy użyciu programu Excel 2013. Spośród 1644 publikacji z PoPe, 345 zostało wybranych po sprawdzeniu, a następnie poddanych dalszej analizie. Rok 2017 okazał się najbardziej obfity pod względem publikacji artykułów dotyczących mieszania pojęć: „różnorodność biologiczna”, „usługi ekosystemowe”, „dynamika miejska” i „zmiany klimatu”. W latach 1990–1996 odnotowano niski wskaźnik artykułów dotyczących tych zagadnień na całym świecie, a dopiero w 2019 i 2020 r. badania naukowe nabrały tempa na kontynencie azjatyckim (128 publikacji), szczególnie w Chinach (22,33 %) i Indiach (7,86 %). Wśród tych publikacji (artykuły, książki, konferencje i inne) najczęściej cytowanym wydawcą był Elsevier (17 359 cytowań). Spośród wybranych publikacji badacze zajmujący się oceną i zarządzaniem różnorodnością biologiczną (33,41 %), mapowaniem i modelowaniem usług ekosystemowych (27,27 %), a także dynamiką użytkowania gruntów na obszarach miejskich (21,13 %) oraz wpływem zmian klimatu (18,19 %) stosowali różnorodne metody. Te różne podejścia metodologiczne zostały wybrane w zależności od celu i roku badań, dostępności zasobów i wiarygodności wyników. Niniejszy przegląd ma istotne znaczenie, dostarczając cennych informacji dotyczących ekologii miejskiej.
Rocznik
Tom
Strony
71--87
Opis fizyczny
Bibliogr. 147 poz., rys., tab.
Twórcy
  • Geomatics and Ecosystem Modeling, Laboratory of Botany and Plant Ecology (LBEV), Department of Botany, Faculty of Sciences, University of Lome, Lomé, Togo
  • Geomatics and Ecosystem Modeling, Laboratory of Botany and Plant Ecology (LBEV), Department of Botany, Faculty of Sciences, University of Lome, Lomé, Togo
  • Department of Forest Resources Technology, FRNR, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
  • Geography Department, Péléforo Gon Coulibaly Korhogo University, Ivory Coast
  • Geomatics and Ecosystem Modeling, Laboratory of Botany and Plant Ecology (LBEV), Department of Botany, Faculty of Sciences, University of Lome, Lomé, Togo
  • Geomatics and Ecosystem Modeling, Laboratory of Botany and Plant Ecology (LBEV), Department of Botany, Faculty of Sciences, University of Lome, Lomé, Togo
  • Geomatics and Ecosystem Modeling, Laboratory of Botany and Plant Ecology (LBEV), Department of Botany, Faculty of Sciences, University of Lome, Lomé, Togo
Bibliografia
  • 1. Elmqvist, T., Setälä, H., Handel, S.N., van der Ploeg, S., Aronson, J., Blignaut, J.N., Gómez-Baggethun, E., Nowak, D.J., Kronenberg, J., de Groot, R. Benefits of restoring ecosystem services in urban areas. Current opinion in environmental sustainability, 2015; volume 14: pp. 101–108.
  • 2. Langemeyer, J.,. Gómez-Baggethun, E. Urban biodiversity and ecosystem services. Urban biodiversity. From research to practice, 2018; pp. 36–53.
  • 3. Francis, R.A., Chadwick, M.A. Urban ecosystems: understanding the human environment. 2013; Routledge.
  • 4. Shwartz, A.,Turbé, A., Julliard, R., Simon, L., Prévot, A.C. Outstanding challenges for urban conservation research and action. Global environmental change, 2014; volume 28, pp. 39–49.
  • 5. Yang, L., Zhang, L., Li, Y., Wu, S. Water-related ecosystem services provided by urban green space: A case study in Yixing City (China). Landscape and urban planning, 2015; volume 136, pp. 40–51.
  • 6. Boyd, E. Juhola, S. Adaptive climate change governance for urban resilience. Urban studies, 2015; volume 52(7), pp. 1234–1264.
  • 7. Allam, Z., Jones, D., Thondoo, M. Cities and climate change: Climate policy, economic resilience and urban sustainability. 2020, Springer.
  • 8. Adegboyega, S., Oloukoi, J., Olajuyigbe, A.E. Evaluation of unsustainable land use/land cover change on ecosystem services in coastal area of Lagos state, Nigeria. Applied Geomatics, 2019, volume 11, pp. 97–110.
  • 9. Grimm, N.B., Faeth, S.H., Golubiewski, N.E. Global change and the ecology of cities. science, 2008; volume 319(5864), pp. 756–760.
  • 10. Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis, R., Halofsky, J.E., Hyde, K.J.W., Morelli, T.L., Morisette, J.T., Munoz, R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D., Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F., Whyte, K.P. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 2020; volume 733, pp. 137782.
  • 11. Bakure, B.Z., Hundera, K., Abara, M. Review on the effect of climate change on ecosystem services. in IOP Conference Series: Earth and Environmental Science. 2022; IOP Publishing.
  • 12. Seto, K.C., Güneralp, B., Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 2012; volume 109(40), pp. 16083–16088.
  • 13. Encaoua, D., Foray, D., Hatchuel, A., Mairesse, J. Les enjeux économiques de l’innovation: Bilan du programme CNRS. Revue d'économie politique, 2004, volume 114(2), pp. 133––168.
  • 14. Storup, B., Millot, G., Neubauer, C. La recherche participative comme mode de production de savoirs. Un état des lieux des pratiques en France, Paris: Fondation Sciences Citoyennes, 2013.
  • 15. Rostaing, H. La bibliométrie et ses techniques. 1996: Sciences de la Société; Centre de Recherche Rétrospective de Marseille.
  • 16. Maddi, A. La quantification de la recherche scientifique et ses enjeux: bases de données, indicateurs et cartographie des données bibliométriques. 2018, Université Sorbonne Paris Cité.
  • 17. Okubo, Y. Indicateurs bibliométriques et analyse des systèmes de recherche: méthodes et exemples, 1997.
  • 18. Cuyala, S. Analyse spatio-temporelle d'un mouvement scientifique. L'exemple de la géographie théorique et quantitative européenne francophone. 2014, Université Paris 1 Panthéon-Sorbonne.
  • 19. Hetu, M. La bibliométrie et l’innovation: l’étude de l’impact de la propriété intellectuelle sur le progrès scientifique. Ethics, Medicine and Public Health, 2018; volume 4, pp. 81–86.
  • 20. Liu, X., Bollen, J., Nelson, M.L., van de Sompel, H. Co-authorship networks in the digital library research community. Information processing & management, 2005; volume 41(6), pp. 1462–1480.
  • 21. Schick-Makaroff, K., MacDonald, M., Plummer, M., Burgess, J., Neander, W. What synthesis methodology should I use? A review and analysis of approaches to research synthesis. AIMS public health, 2016; volume 3(1), pp. 172.
  • 22. Wyborn, C., Louder, E., Harrison, J., Montambault, J., Montana, J., Ryan, M., Bednarek, A., Nesshöver, C., Pullin, A., Reed, M., Dellecker, E., Kramer, J., Boyd, J., Dellecker, A., Hutton, J. Understanding the impacts of research synthesis. Environmental Science & Policy, 2018; volume 86, pp. 72–84.
  • 23. Harzing, A.W. The publish or perish book. 2010: Tarma Software Research Pty Limited Melbourne, Australia.
  • 24. OECD. Gross domestic spending on R&D. 2020; Available from: (https://www.oecd.org/en/countries/china-people-s-republic-of.html).
  • 25. Brennan, J., Broek, S., Durazzi, N., Kamphuis, B., Ranga, M. Steve R. Study on innovation in higher education. Publications Office of the European Union, Luxembourg, 2014.
  • 26. Hrabowski, F.A. Institutional change in higher education: Innovation and collaboration. Peabody Journal of Education, 2014; volume 89(3), pp. 291–304.
  • 27. Kouadio, Y.J.C., Vroh, B.T.A., Bi, Z.B.G., Yao, Y.C.A. Évaluation de la diversité et estimation de la biomasse des arbres d’alignement des communes du Plateau et de Cocody (Abidjan-Côte d’Ivoire). Journal of Applied Biosciences, 2016; volume 97, pp. 9141–9151.
  • 28. Sehoun, L.C., Osseni, A.A., Orounladji, M., Lougbegnon, T.O., Codjia, J.C.T. Diversité floristique des formations végétales urbaines au Sud du Bénin (Afrique de l’Ouest). Revue Marocaine des Sciences Agronomiques et Vétérinaires, 2021; volume 9(2), pp. 266–273.
  • 29. Kabanyegeye, H., Ndayishimiye, J., Hakizimana, P., Masharabu, T., Malaisse, F., Bogaert, J. Diversité floristique et statut de conservation des espaces verts de la ville de Bujumbura (Burundi). Geo-Eco-Trop: Revue Internationale de Géologie, de Géographie et d'Écologie Tropicales, 2022; volume 46(1), pp. 15–28.
  • 30. Charahabil, M.M., Bassene, C., Balde, H., Ndiaye, S. Diversité et structure des espaces végétalisés urbains de la ville de Ziguinchor, Sénégal. International Journal of Biological and Chemical Sciences, 2018; volume 12(4), pp. 1650–1666.
  • 31. Mehraj, G., Khuroo, A.A., Hamid, M., Muzafar, I., Rashid, I., Malik, A.H. Floristic diversity and correlates of naturalization of alien flora in urban green spaces of Srinagar city. Urban Ecosystems, 2021; volume 24, pp. 1–14.
  • 32. Kleeschulte, S., Gregor, M., Ayanu, Y., Jochen, A., Jaeger, G., Nazarnia, N., Paganini, M. Earth Observation in Support of the City Biodiversity Index. 2016.
  • 33. Titeux, N., Henle, K., Mihoub, J.B., Regos, A., Geijzendorffer, I.R., Ctamer, W., Verburg, P.H., Brotons, L. Biodiversity scenarios neglect future land‐use changes. Global change biology, 2016; volume 22(7), pp. 2505–2515.
  • 34. Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 2009; volume 12, pp. 374–390.
  • 35. Ten Brink, B., Tekelenburg, T. Biodiversity: how much is left. The Natural Capital Index framework (NCI). RIVM report, 2002. 402001014.
  • 36. Scholes, R.J. Biggs, R. A biodiversity intactness index. Nature, 2005; volume 434(7029), pp. 45–49.
  • 37. Certain, G., Skarpaas, O., Bjerke, J.W., Framstad, E. The Nature Index: A general framework for synthesizing knowledge on the state of biodiversity. PLoS One, 2011; volume 6(4), e18930.
  • 38. Yun, H., Park, J., Choi, T., Choi, I. A review on applicability of sustainable city index-focusing on GCI, EPI and CBI. Journal of environmental impact assessment, 2015; volume 24(6), pp. 593–606.
  • 39. Uchiyama, Y., Hayashi, K., Kohsaka, R. Typology of cities based on city biodiversity index: exploring biodiversity potentials and possible collaborations among Japanese cities. Sustainability, 2015; volume 7(10), pp. 14371–14384.
  • 40. Bhattacharya, T. Comparative assessment of ecosystem and biodiversity conservation measures in Indian smart cities: a city biodiversity index approach. Int J Sustain Futur Hum Secur, 2017; volume 5(2), pp. 18.
  • 41. Sahani, S., Raghavaswamy, V. Analyzing urban landscape with City Biodiversity Index for sustainable urban growth. Environmental Monitoring and Assessment, 2018; volume 190, pp. 1–18.
  • 42. Amarasinghe, N.S., Perera. P.K.P. Application of the City Biodiversity Index: A Sri Lankan Case Study. 2018.
  • 43. Chernyshenko, O., Frolova, V.A., Zhdanova, L.P. UN strategy and ecosystem sustainability indicators for preserving Moscow’s urban biodiversity. FORESTRY BULLETIN, 2021.
  • 44. MEA, Ecosystems and human well-being: wetlands and water. 2005: World Resources Institute.
  • 45. TEEB, Ecological and economic foundation. 2010, The UK National Ecosystem Assessment Technical Report. UNEP-WCMC, Cambridge: Earthscan, Cambridge. UK NEA, 2011.
  • 46. O'Farrell, P. Évaluation des services écosystémiques dans les zones urbaines. 2ème édition ed. Le manuel Routledge d’écologie urbaine. 2020.
  • 47. Boyd, J. Services écosystémiques : évaluation. Écosystèmes terrestres et biodiversité, 2020, volume 2, CRC Presse.
  • 48. Zhao, X., Hu, W., Han, J., Wei, W., Xu, J. Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images. Remote Sensing, 2024; volume 16(7), 1229.
  • 49. Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, r.E., Lehner, B., Malcolm, T.R., Rickett, T.H. Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences, 2008; volume 105(28), pp. 9495–9500.
  • 50. Schulp, C.J., Alkemade, R., Petz, K., Goldewijk, K.K. Mapping ecosystem functions and services in Eastern Europe using global-scale data sets. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012; volume 8(1–2), pp. 156–168.
  • 51. Lasseur, R. Cartographie multi-échelles des services écosystémiques: caractérisation des associations spatiales et apports de la télédétection. 2017, Université Grenoble Alpes.
  • 52. Pelorosso, R., Gobattoni, F., Geri, F., Leone, A. PANDORA 3.0 plugin. 2017.
  • 53. Wunder, S., Wertz-Kanounnikoff, S. Payments for ecosystem services: a new way of conserving biodiversity in forests. Journal of Sustainable Forestry, 2009; volume 28(3–5), pp. 576–596.
  • 54. Bhatta, L.D., Helmuth, Bob, E., van Oort, H., Rucevska, I., Baral, H. Payment for ecosystem services: possible instrument for managing ecosystem services in Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management, 2014; volume 10(4), pp. 289–299.
  • 55. Selmi, W. Ecosystem services provided by urban vegetation: Application of assessment approaches in Strasbourg city. Services écosystémiques rendus par la végétation urbaine Application d'approches d'évaluation à la ville de Strasbourg. 2014, Université de Strasbourg.
  • 56. de Groot, R.S., Alkemade, R., Braat, L., Hein, L., Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological complexity, 2010; volume 7(3), pp. 260–272.
  • 57. Wainger, L., Mazzotta, M. Realizing the potential of ecosystem services: a framework for relating ecological changes to economic benefits. Environmental management, 2011; volume 48, pp. 710–733.
  • 58. Dixon, J., Pagiola, S. Analyse économique et évaluation environnementale. 1998.
  • 59. Colon, M., Mattersdorf, G., Pavageau, C. La place de l’évaluation économique de la biodiversité et des services écosystémiques dans les processus de décision. Nancy, France, AgroParisTech/IDDRI, 2009.
  • 60. Dupras, J. Évaluation économique des services écosystémiques dans la région de Montréal: analyse spatiale et préférences exprimées, 2014.
  • 61. Ndiaye, L. Perception communautaire sur la diversité floristique et les biens et services écosystémiques fournis par la végétation ligneuse dans la commune de Coumbacara (Kolda, Sénégal), 2020.
  • 62. Riechers, M., Barkmann, J., Tscharntke, T. Perceptions of cultural ecosystem services from urban green. Ecosystem Services, 2016; volume 17, pp. 33–39.
  • 63. Kabanyegeye, H., Masharabu, T., Sikuzani, Y.U., Bogaert, J. Perception sur les espaces verts et leurs services écosystémiques par les acteurs locaux de la ville de Bujumbura (République du Burundi). Tropicultura, 2020; volume 38(3–4).
  • 64. Wessels, N., Sitas, N., Esler, K., o'Farrell, P. Understanding community perceptions of a natural open space system for urban conservation and stewardship in a metropolitan city in Africa. Environmental Conservation, 2021; volume 48(4), pp. 244–254.
  • 65. Ouédraogo, I., Blandine, M., Nacoulma, I., Hahn, K., Thiombiano, A. Assessing ecosystem services based on indigenous knowledge in south-eastern Burkina Faso (West Africa). International Journal of Biodiversity Science, Ecosystem Services & Management, 2014; volume 10(4), pp. 313–321.
  • 66. Plieninger, T., Dijks, S., Oteros Rozas, E., Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land use policy, 2013; volume 33, pp. 118–129.
  • 67. McPhearson, T., Kremer, P., Hamstead, Z.A. Mapping ecosystem services in New York City: Applying a social–ecological approach in urban vacant land. Ecosystem Services, 2013; volume 5, pp. 11–26.
  • 68. Burkhard, B., Kroll, F., Nedkov, S., Müller, F. Mapping ecosystem service supply, demand and budgets. Ecological indicators, 2012; volume 21, pp. 17–29.
  • 69. Martínez-Harms, M.J., Balvanera, P. Methods for mapping ecosystem service supply: a review. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012; volume 8(1–2), pp. 17–25.
  • 70. Hou, Y., Burkhard, B., Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. Journal of environmental management, 2013; volume 127, pp. 117–131.
  • 71. Yang, D., Liu, W., Tang, L., Chen, L., Li, X., Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landscape and Urban Planning, 2019; volume 182, pp. 133–143.
  • 72. Wu, L., Sun, C., Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sensing, 2021; volume 13(5), pp. 1008.
  • 73. Zhong, Y., Lin, A., He, L., Zhou, Z., Yuan, M. Spatiotemporal dynamics and driving forces of urban land-use expansion: A case study of the Yangtze River economic belt, China. Remote Sensing, 2020; volume 12(2), pp. 1–26.
  • 74. Shao, M., Wu, L., Li, F., Lin, C. Spatiotemporal dynamics of ecosystem services and the driving factors in urban agglomerations: Evidence from 12 National Urban Agglomerations in China. Frontiers in Ecology and Evolution, 2022; volume 10, p. 804969.
  • 75. Peng, L., Zhang, L., Li, Z., Wang, P., Zhao, W., Wang, Z., Jiao, L., Wang, H. Spatio-temporal patterns of ecosystem services provided by urban green spaces and their equity along urban–rural gradients in the Xi’an Metropolitan Area, China. Remote Sensing, 2022; volume 14(17), p. 4299.
  • 76. Weisstein, E.W., Gini coefficient, 2000. (https://mathworld.wolfram. com/).
  • 77. Tooke, T.R., Klinkenberg, B., Coops, N.C. A geographical approach to identifying vegetation-related environmental equity in Canadian cities. Environment and Planning B: Planning and Design, 2010; volume 37(6), pp. 1040–1056.
  • 78. Fotheringham, A.S., Brunsdon, C., Charlton, M. Geographically weighted regression. The Sage handbook of spatial analysis, 2009; volume 1, pp. 243–254.
  • 79. Han, B., Ouyang, Z. The comparing and applying Intelligent Urban Ecosystem Management System (IUEMS) on ecosystem services assessment. Acta Ecol. Sin, 2021; volume 41, pp. 8697–8708.
  • 80. Clauzel, C. Dynamiques de l'occupation du sol et mutations des usages dans les zones humides urbaines. Étude comparée des hortillonnages d'Amiens (France) et des chinampas de Xochimilco (Mexique), 2008, Université Paris-Sorbonne-Paris IV.
  • 81. Bonhomme, M., Création d'un outil d'aide à la décision pour un aménagement durable des espaces verts dans les municipalités, 2012, Université de Sherbrooke.
  • 82. Compaoré, G., Nebié, O. Croissance démographique et espace urbain à Ouagadougou (Burkina Faso). Centre de Recherches sur les espaces Tropicaux, Études urbaines à Ouagadougou–Burkina Faso, Bordeaux, CRET, 2003; volume 11, pp. 9–28.
  • 83. Boyer, F. Croissance urbaine, statut migratoire et choix résidentiels des Ouagalais. Vers une insertion urbaine ségrégée? Revue Tiers Monde, 2010(1); pp. 47–64.
  • 84. Gallez, C., Maksim, H.N. À quoi sert la planification urbaine? Flux, 2007; volume 69(3), pp. 49–62.
  • 85. Oladokoun, A., Ayoh, A., Atchade, A.J., Fandjinou, K. Patterns of urban ecology and sustainability challenges in Togo cities, West Africa. Applied Ecology & Environmental Research, 2024; volume 22(2), pp. 1711–1731.
  • 86. Coutard, O., Rutherford, J. Vers l’essor de villes «post-réseaux»: infrastructures, innovation sociotechnique et transition urbaine en Europe». L’innovation face aux défis environnementaux de la ville contemporaine, 2013; pp. 97–118.
  • 87. Mangin, G., Marchal,H., Vincent, S. Les formes contemporaines de la mobilité. Espace populations sociétés. Space populations societies, 2023(2023/2).
  • 88. Guérois, M., Paulus, F. Commune centre, agglomération, aire urbaine: quelle pertinence pour l’étude des villes? Cybergeo, 2002; volume 212, p. 15.
  • 89. Leducq, D., Ananian, P. Qu’apporte l’urbanisme à l’étude des espaces de coworking? Revue de littérature et approche renouvelée. Économie Régionale et Urbaine, 2019; volume 5, pp. 963–986.
  • 90. Sudhira, H., Ramachandra, T., Jagadish, K. Urban sprawl: metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 2004; volume 5(1), p. 29–39.
  • 91. Zhang, Q., Wang, J. A rule-based urban land use inferring method for fine-resolution multispectral imagery. Canadian Journal of Remote Sensing, 2003; volume 29(1), pp. 1–13.
  • 92. Berrada, A., He, D.C., Morin, D. Identification des piscines à l’aide d’une image ikonos: cas de la ville de Sherbrooke (Québec). Revue Télédétection, 2007; volume 1, pp. 2–3.
  • 93. Wang, D., He, D.C., Wang, L., Morin, D. L'extraction du réseau routier urbain à partir d'images SPOT HRV. International Journal of Remote Sensing, 1996; volume 17(4), pp. 827–833.
  • 94. Zhang, Q., Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sensing of Environment, 2011; volume 115(9), p. 2320–2329.
  • 95. Demaze, M.T. Un panorama de la télédétection de l'étalement urbain. ESO Travaux et Documents, 2010; volume 29, pp. 99–124.
  • 96. Lang, F.M. Suivi des changements des utilisations/occupations du sol en milieu urbain par imagerie satellitale de résolution spatiale moyenne: Le cas de la région métropolitaine de Montréal. 2012.
  • 97. Charfi, S., Dahech, S. Cartographie des températures à Tunis par modélisation statistique et télédétection. Mappemonde. Revue trimestrielle sur l’image géographique et les formes du territoire, 2018(123).
  • 98. Marou, M., Elyaagoubi, M. Agriculture urbaine entre ancrage territorial et défis de l’urbanisation: cas de la ville de Guercif (Maroc oriental). Territoires, Environnement et Développement (TED), 2024; volume 3(1), p. 27–36.
  • 99. Carine, N.M.A., Ta, M.Y., Armel, K.K., Satti, K. Cartographie des unités d'occupation du sol du District d'Abidjan depuis le cloud Google Earth Engine, sur la base des images optiques Sentinel-2 et des algorithmes de Machine Learning. International Journal of Innovation and Applied Studies, 2023; volume 40(1), pp. 310–332.
  • 100. El Garouani, A., Aharik, K. Apport des images LANDSAT à l’étude de l’évolution de l’occupation du sol dans la plaine de SAÏSS au MAROC, pour la période 1987–2018. Revue Française de Photogrammétrie et de Télédétection, 2021; volume 223(1), pp. 173–188.
  • 101. Mba, B.M.M., Pennober, G., Revillion, C., Rouet, P., David, G. Estimations, à partir de séries d’images LANDSAT, des évolutions de stocks de carbone de différentes formations en milieu équatorial côtier-cas de Libreville au Gabon. Revue Française de Photogrammétrie et de Télédétection, 2022; volume 223, p. 217–231.
  • 102. Xu, H. A new index for delineating built‐up land features in satellite imagery. International journal of remote sensing, 2008; volume 29(14), pp. 4269–4276.
  • 103. Khallef, B., Brahamia, K., Oularbi, A.R. Application des indices de télédétection à la cartographie des zones urbaines et des sols nus: Cas de la ville de Guelma (Nord-est de L'Algérie). International Journal of Innovation and Applied Studies, 2020; volume 28(2), pp. 452–457.
  • 104. Rouse Jr, J.W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. 1974.
  • 105. Zha, Y., Gao, J., Ni, S. Use of normalized difference builtup index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 2003; volume 24(3), pp. 583–594.
  • 106. Khomarudin, M.R. Tsunami Risk and Vulnerability, 2010.
  • 107. Zhao, H., Chen, X. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In International geoscience and remote sensing symposium. 2005.
  • 108. Yulianto, F., Tjahjono, B., Anwar, S. Detection settlements and population distribution using GIS and remotely sensed data, in the surrounding area of Merapi Volcano, Central Java, Indonesia. Int J Emerg Technol Adv Eng, 2014; volume 4(3), pp. 1–10.
  • 109. As-Syakur, A.R., Adnyana, I.W.S., Arthana, I.W., Nuarsa, I.W. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote sensing, 2012; volume 4(10), pp. 2957–2970.
  • 110. Sammari, H. Développement d’une méthode d’automate cellulaire basé sur une tessellation irrégulière et hiérarchique pour la simulation des processus spatiotemporels, 2014.
  • 111. Essid, H. Modélisation spatio-temporelle à base de modèles de Markov cachés pour la prévision des changements en imagerie satellitaire: cas de la végétation et de l'urbain, 2012, Université Blaise Pascal-Clermont-Ferrand II.
  • 112. Grossetti, M. Les effets de proximité spatiale dans les relations entre organisations: une question d'encastrements. Espace et Société, 2000; volume 101–102, pp. 203–219.
  • 113. Oliveau, S. Autocorrélation spatiale: leçons du changement d’échelle. Espace géographique, 2010; volume 39(1), pp. 51–64.
  • 114. Wu, J., Jelinski, D.E., Luck, M.A., Tueller, P.T. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geographic information sciences, 2000; volume 6(1), pp. 6–19.
  • 115. Oszwald, J., Gond, V., Dolédec, S., Lavelle, P. Identification d'indicateurs de changement d'occupation du sol pour le suivi des mosaïques paysagères. Bois et forêts des tropiques, 2011; volume 307(1), pp. 7–21.
  • 116. McGarigal, K. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995; volume 351.
  • 117. Jung, M. LecoS—A python plugin for automated landscape ecology analysis. Ecological informatics, 2016; volume 31, pp. 18–21.
  • 118. Subirós, J.V., Welch, J.M. La homogeneización paisajística de los valles de Hortmoier y Sant Aniol (Alta Garrotxa. Girona): Caracterización y evaluación de los cambios ambientales en el período 1957–1979–1996 con Patch Analyst. in Actas del XVII Congreso de Geógrafos Españoles: Oviedo, noviembre de 2001, 2001. Departamento de Geografía.
  • 119. Junfei, L.W., Yanming, L., Jia, G., Wei L., Yanhua, B. Évaluation de l’indice de configuration du paysage des parcs urbains de Pékin basée sur Patch Analyst. Environnement urbain et écologie urbaine, 2007; volume 6, pp. 14–16.
  • 120. Baral, H., Keenan, R.J., Sharma, S.K., Stork, N.E., Kasel, S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecological Indicators, 2014; volume 36, pp. 552–562.
  • 121. Battya, M., Xieb, Y., Sunc, Z. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 1999; volume 23(205), p. 233.
  • 122. Xie, Y., Sun, Z. Modeling urban dynamics through GISbased cellular automata. Computers, environment and urban systems, 1999; volume 23(3), pp. 205–233.
  • 123. He, C., Zhao, Y., Tian, J., Shi. Modeling the urban landscape dynamics in a megalopolitan cluster area by incorporating a gravitational field model with cellular automata. Landscape and Urban planning, 2013; volume 113, pp. 78–89.
  • 124. He, C., Zhang, D., Huang, Q., Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environmental Modelling & Software, 2016; volume 75, pp. 44–58.
  • 125. Li, X., Gong, P. Urban growth models: progress and perspective. Science bulletin, 2016; volume 61, pp. 1637––1650.
  • 126. Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S.A. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 2002; volume 30, pp. 391–405.
  • 127. Verburg, P.H., Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape ecology, 2009; volume 24, pp. 1167–1181.
  • 128. Soares-Filho, B.S., Cerqueira, G.C., Pennachin, C.L. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological modelling, 2002; volume 154(3), pp. 217–235.
  • 129. Li, X., Chen, Y., Liu, X., Li, D. Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. International Journal of Geographical Information Science, 2011; volume 25(4), pp. 633–655.
  • 130. Torrens, P.M., Benenson, I. Geographic automata systems. International Journal of Geographical Information Science, 2005; volume 19(4), pp. 385–412.
  • 131. Clarke, K.C., Hoppen, S., Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and planning B: Planning and design, 1997; volume 24(2), pp. 247–261.
  • 132. Waddell, P. UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Journal of the American planning association, 2002; volume 68(3), pp. 297–314.
  • 133. Satterthwaite, D., Huq, S., Pelling, M., Reid, H., Lankao, P.R. Adapting to Climate Change in Urban Areas: The Possibilities and Constraints in Low-and Middle-Income Nations1, in Adapting cities to climate change, Routledge, 2012; pp. 3–47.
  • 134. Mooney, H., Larigauderie, A., Cesario, M., Elmqvist, T., Hoegh-Guldberg, O., Lavorel, S., Mace, G.M., Palmer, M., Sholes, R.J., Yahara, T. Biodiversity, climate change, and ecosystem services. Current opinion in environmental sustainability, 2009; volume 1(1), pp. 46–54.
  • 135. Kumar, P. Climate change and cities: challenges ahead. Frontiers in Sustainable Cities, 2021; volume 3, p. 645613.
  • 136. Oke, T.R. The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 1982; volume 108(455), pp. 1–24.
  • 137. Knowles, C.L. Planning Strategies for Improving Resilience of Cities in Developing Countries to the Urban Heat Island, 2020.
  • 138. Hajat, S., O'Connor, M., Kosatsky, T. Health effects of hot weather: from awareness of risk factors to effective health protection. The Lancet, 2010; volume 375(9717), pp. 856–863.
  • 139. Nicholls, R.J., Cazenave, A. Sea-level rise and its impact on coastal zones. science, 2010; volume 328(5985), pp. 1517–1520.
  • 140. Kundzewicz, Z.W., Kanae, S.., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., Kron, W., Benito, G., Honda, Y., Takahashi, K., Sherstyukov, B. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 2014; volume 59(1), pp. 1–28.
  • 141. Rosenzweig, C., Hammer, S.A., Mehrotra, S., Solecki, W.D. Climate change and cities: First assessment report of the urban climate change research network. 2011: Cambridge University Press.
  • 142. Saeed, U., Arshad, M., Hayat, S., Morelli, T.L., Nawaz, M.A. Analysis of provisioning ecosystem services and perceptions of climate change for indigenous communities in the Western Himalayan Gurez Valley, Pakistan. Ecosystem Services, 2022; volume 56, p. 101453.
  • 143. Kosmowski, F.,Lalou, R., Sultan, B., Ndiaye, O., Muller, B., Galle, S., Seguis, L. Observations et perceptions des changements climatiques. 2015, IRD.
  • 144. Bedoum, A., Clobite, B., Mbanghoguinan, A., Issak, B.L. Impact de la variabilité pluviométrique et de la sécheresse au sud du Tchad: effets du changement climatique. Revue Ivoirienne des Sciences et Technologies, 2014; volume 23, pp. 13–30.
  • 145. Badameli, A., Dubreuil, V. Diagnostic du changement climatique au Togo à travers l’évolution de la température entre 1961 et 2010. in XXVIIIe Colloque de l’association internationale de Climatologie, 2015.
  • 146. Boudjellal, L., Bourbia, F. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. International Journal of Environmental Studies, 2018; volume 75(2), pp. 309–320.
  • 147. Gherraz, H., Alkama, D. L'estimation de l'impact des espaces verts et des surfaces d'eau sur le climat urbain et la temperature de surface du sol (Mila, Algérie). Romanian Journal of Geography/Revue Roumaine de Géographie, 2020; volume 64(2), pp. 155–174.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54560d5a-d09b-40d7-970f-ce221c76bdcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.