PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Searching for An Optimal Switched Reluctance Motor Design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An approach helpful when developing an optimized construction of a 6/4 type switched reluctance motor (SRM) is described in the paper. The analytical modeling procedure, based on the reluctance network method and analytical solution of an ordinary differential equation, enables applying a gradient optimization routine and better control of optimization process. The model allows for estimation of the efficiency, torque, and acoustic noise of the motor taking into account the magnetic non-linearity and the control algorithm to keep a constant input power. A bicriterial optimization routine has been applied to find optimal constructions. Eleven geometric and winding parameters are supposed to be the optimization quantities. Analyzed constructions – the initial one and the optimized ones, were validated by means of FEM calculations. The proposed approach can be employed in designing the SRM to be a drive motor in an electrical vehicle, at least as a first attempt.
Rocznik
Strony
667--682
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., wz.
Twórcy
  • AGH University of Science and Technology Al. Mickiewicza 30, 30-059, Kraków, Poland
  • Nidec Motors & Actuators (Poland), Sp. z o.o. ul. Skarbowa 36, Niepołomice 32-005, Poland
Bibliografia
  • [1] Rahman K.M., Schulz S.E., Design of High-Efficiency and High-Torque-Density Switched Reluctance Motor for Vehicle Propulsion. IEEE Transactions on Industry Applications 38(6): 1500-1507 (2002).
  • [2] Crevecoeur G., Dupré L., Van de Walle R., Space Mapping Optimization of the Magnetic Circuit of Electrical Machines Including Local Material Degradation. IEEE Transactions on Magnetics 43(6): 2609-2611 (2007).
  • [3] Omekanda A.M., A New Technique for Multidimensional Performance Optimization of Switched Reluctance Motors for Vehicle Propulsion. IEEE Transactions on Industry Applications 39(3): 672676 (2003).
  • [4] Matveev A., Development of Methods, Algorithms and Software for Optimal Design of Switched Reluctance Drives. PhD thesis, Eindhoven University of Technology (2006).
  • [5] Anwar M.N., Husain I., Radun A.V., A Comprehensive Design Methodology for Switched Reluctance Machines. IEEE Transactions on Industry Applications 37(6): 1684-1692 (2001).
  • [6] Łukaniszyn M, Kowol M, Kołodziej J., Optimization of a two-phase transverse flux switched reluctance motor with an outer rotor. Archives of Electrical Engineering 61(4): 567-578 (2012).
  • [7] Kowol M., Łukaniszyn M., Latawiec K.J., Modelling and construction optimization of a modular TFM with an outer rotor. Electrical Engineering 92: 111-118 (2010).
  • [8] Mirzaeian B., Moallem M., Tahani V., Lucas C. Multiobjective Optimization Method Based on a Genetic Algorithm for Switched Reluctance Motor Design. IEEE Transactions on Magnetics 38(3): 1524-1527 (2002).
  • [9] Choi C., Lee D., Park K., Fuzzy Design of a Switched Reluctance Motor Based on the Torque Profile Optimization. IEEE Transactions on Magnetics 36(5): 3548-3550 (2000).
  • [10] Majchrowicz M., Analytical Model of Switched Reluctance Motor for its Optimization. Elektrotechnika i Elektronika 26(1-2): 46-53 (2007) (in Polish).
  • [11] Jazdzynski W., Majchrowicz M., An Approach to Find an optimum Designed SRM for electric vehicle drive. Proceedings of the 2008 International Conference on Electrical Machines, Portugal, Vilamoura: Paper ID 1391 (2008).
  • [12] Majchrowicz M., Jażdżyński W., Selected aspects of an optimization of a switched reluctance (SRM) for an electric vehicle drive. Zeszyty Problemowe – Maszyny Elektryczne 84/2009: 147-150, XLV International Symposium on Electrical Machines, SME’2009, Poland, Rzeszów-Krasiczyn (2009) (in Polish).
  • [13] Majchrowicz M., Jazdzynski W. Selected Problems of Optimization of a Switched Reluctance Motor for an Electric Vehicle using Analytical Calculations. International Conference on Renewable Energies and Power Quality (ICREPQ’10), Spain, Granada: Paper ID 483 (2010).
  • [14] Majchrowicz M., Optimization of the Switched Reluctance Motor for an Electric Vehicle Drive. PhD thesis (in Polish), AGH University of Science and Technology (2011).
  • [15] Jazdzynski W., Majchrowicz M., Analytical Model of a Switched Reluctance Motor for its Optimization – Selected Problems. Electrical Review 89(11): 153-158 (2013).
  • [16] Bausch H., Greif A., Lange B., Bautz R. A 50 kW/15000 rpm Switched Reluctance Drive for an Electric Vehicle: Current Control and Performance Characteristics. Proceedings of XIV International Conference on Electrical Machines, Finland, Espoo: 603-607 (2000).
  • [17] Suzuki T., Ito S., Tanaka N. et al., Development of High-Efficiency Switched Reluctance Motor. Electrical Engineering in Japan 162(2): 73-82 (2008)
  • [18] Bausch H., Greif A., Nickel A.B.A., A Switched Reluctance and an Induction Machine in a Drivetrain for an Electrical Vehicle Under the Conditions of a Car Application, Proceedings of XIV International Conference on Electrical Machines, Finland, Espoo: 1313-1316 (2000).
  • [19] Krishnan R., Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications. (CRC Press LLC, 2001).
  • [20] Anwar M.N., Husain I., Radial Force Calculation and Acoustic Noise Prediction in Switched Reluctance Machines, IEEE Transactions on Industry Applications 36(6): 1589-1597 (2000).
  • [21] Gieras J.F., Wang C., Lai J.C., Noise of Polyphase Electric Motors. CRC Press, Taylor & Francis Group (2006).
  • [22] Rasmussen P.O., Blaabjerg F., Pedersen J.K. et al., Acoustic noise simulation for Switched Reluctance Motors with audible output. Proceedings of European Conference on Power Electronics and Applications, Switzerland, Lausanne: 1-13 (1999).
  • [23] Miller T.J.E., Brushless Permanent-Magnet and Reluctance Motor Drives. Clarendon Press (1989).
  • [24] Schittkowski K., Nonlinear Programming Codes. Springer-Verlag (1980).
  • [25] Jazdzynski W., Multicriterial optimization of squirrel-cage induction motor design. IEE Proceedings 136 Pt. B(6): 299-307 (1989).
  • [26] Sizov G.Y., Ionel D.M., Demerdash N.A.O., Modeling and Parametric Design of Permanent-Magnet AC Machines Using Computationally Efficient Finite-Element Analysis. IEEE Transactions on Industrial Electronics 59(6): 2403-2413 (2012). 10.2478/aee-2014-0046
  • [27] Sizov G.Y., Peng Zhang, Ionel D.M. et al., Automated bi-objective design optimization of multi-MW direct-drive PM machines using CE-FEA and differential evolution. Energy Conversion Congress and Exposition (ECCE), IEEE: 3672-3678 (2011).
  • [28] Jażdżyński W., Designing electric machines and identification of their models using multi-criteria optimization. AGH University of Science and Technology, a series of “Dissertations and Monographs” 28, Kraków (1995) (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5455ea45-1a4c-4366-aa9c-2d81b3eaff3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.