PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of trabecular bone storage method on its elastic properties

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the study was to evaluate the effects of different methods of trabecular bone storage on changes in its elastic properties. Methods: 186 porcine trabecular bone samples were divided into 6 groups, approximately 30 samples each. Five groups were stored using the following methods: in buffered 10% formalin solution at room temperature, frozen at –21 C, in the open air at room temperature, in 96% alcohol solution and in 50% alcohol solution at room temperature. The samples were subjected to compression test to measure the elastic modulus. The samples after the first measurement were subjected to further measurements for 14 weeks, every 2 weeks. The sixth group was used to determine the effects of 10 freeze-thaw cycles on changes in the elastic modulus. A Kolmogorov–Smirnov test at significance level p = 0.05 was used to determine the significance of changes in time. Results: The changes in elastic properties caused by the different storage methods were statistically insignificant, except for the group of samples stored in the open air. The changes in elastic modulus after 10 freeze-thaw cycles were also statistically insignificant. Conclusions: Except for the storage method in the open air, other storage methods did not significantly affect changes in elastic properties of the trabecular bones after 14 weeks. No effects of 10 freeze-thaw cycles on changes in elastic modulus were observed.
Rocznik
Strony
21--27
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • University of Science and Technology, Mechanical Engineering Department, Bydgoszcz, Poland
Bibliografia
  • [1] AN Y.H., DRAUGHN R.A., Mechanical testing of bone and the bone implant interface, CRC Press, 2000.
  • [2] BARRIOS R.H., LEYES M., AMILLO S., OTEIZA C., Bacterial contamination of allografts, Acta Orthop. Belg., 1994, 60(2), 152–4.
  • [3] BORCHERS R.E., GIBSON L.J., BURCHARDT H., HAYES W.C., Effects of selected thermal variables on the mechanical properties of trabecular bone, Biomaterials, 1995, 16(7), 545–51.
  • [4] CARBALLIDO-GAMIO J., HARNISH R., SAEED I., STREEPER T., SIGURDSSON S., AMIN S., ATKINSON E.J., THERNEAU T.M., SIGGEIRSDOTTIR K., CHENG X., MELTON L.J., KEYAK J., GUDNASON V., KHOSLA S., HARRIS T.B., LANG T.F., Proximal femoral density distribution and structure in relation to age and hip fracture risk in women, J. Bone Mineral Res. 2013, 28(3), 537–546.
  • [5] EDMONDSTON S.J., SINGER K.P., DAY R.E., BREIDAHL P.D., PRICE R.I., Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae, Clin. Biomech. (Bristol, Avon), 1994, 9(3), 175–9.
  • [6] KEAVENY T.M., PINILLA T.P., CRAWFORD R.P., KOPPERDAHL L., LOU A., Systematic and random errors in compression testing of trabecular bone, J Orthop Res., 1997, 15(1), 101–10.
  • [7] LANDAUER A.K., MONDAL S., YUYA P.A., KUXHAUS L., Cyclic cryopreservation affects the nanoscale material properties of trabecular bone, J. Biomech., 2014, 47(14), 3584–9.
  • [8] LEE W., JASIUK I., Effects of freeze-thaw and microcomputed tomography irradiation on structure-property relations of porcine trabecular bone, J Biomech., 2014, 47(6), 1495–8.
  • [9] LINDE F., HVID I., Stiffness behaviour of trabecular bone specimens, J. Biomech., 1987, 20(1), 83–9.
  • [10] LINDE F., SØRENSEN H.C., The effect of different storage methods on the mechanical properties of trabecular bone, J. Biomech., 1993, 26(10), 1249–52.
  • [11] MAZURKIEWICZ A., TOPOLIŃSKI T., Relationships between structure, density and strength of human trabecular bone, Acta. Bioeng. Biomech., 2009, 11(4), 55–61.
  • [12] MEANA A., MARTINEZ R., CAÑAL P., ARRIAGA M.J., ROMAN F.S., LLAMES S., OROS C., MORENO A., FERNANDEZ C., Cancellous bone homograft storage with aluminium-polyethylene bags, Cell Tissue Bank., 2006, 7(3), 203–6.
  • [13] MOSEKILDE L., KRAGSTRUP J., RICHARDS A., Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs, Calcif Tissue Int., 1987, 40(6), 318–22.
  • [14] NIKODEM A., Correlations between structural and mechanical properties of human trabecular femur bone, Acta. Bioeng. Biomech., 2012, 14(2), 37–46.
  • [15] ODGAARD A., LINDE F., The underestimation of Young’s modulus in compressive testing of cancellous bone specimens, J. Biomech., 1991, 24(8), 691–8.
  • [16] OH J.H., ZÖLLER J.E., KÜBLER A., A new bone banking technique to maintain osteoblast viability in frozen human iliac cancellous bone, Cryobiology, 2002, 44(3), 279–87.
  • [17] PEARCE A.I., RICHARDS R.G., MILZ S., SCHNEIDER E., PEARCE S.G., Animal models for implant biomaterial research in bone: A review, Eur Cell Mater., 2007, 2(13), 1–10.
  • [18] PÖPPERL G., LOCHMÜLLER E., BECKER H., MALL G., STEINLECHNER M., ECKSTEIN F., Determination of calcaneal ultrasound properties ex situ: reproducibility, effects of storage, formalin fixation, maceration, and changes in anatomic measurement site, Calcif Tissue Int., 1999, 65(3), 192–7.
  • [19] R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 2008.
  • [20] RAAB D.M., CRENSHAW T.D., KIMMEL D.B., SMITH E.L., A histomorphometric study of cortical bone activity during increased weight-bearing exercise, J. Bone Miner. Res., 1991, 6(7), 741–9.
  • [21] RAPILLARD L., CHARLEBOIS M., ZYSSET P.K., Compressive fatigue behavior of human vertebral trabecular bone, J. Biomech., 2006, 39(11), 2133–9.
  • [22] SCHLEGEL K.A., LANG F.J., DONATH K., KULOW J.T., WILTFANG J., The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102(1), 7–13.
  • [23] THORWARTH M., SCHULTZE-MOSGAU S., KESSLER P., WILTFANG J., SCHLEGEL K.A., Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite, J. Oral Maxillofac. Surg., 2005, 63(11), 1626–33.
  • [24] TOMANIK M., NIKODEM A., FILIPIAK J., Microhardness of human cancellous bone tissue in progressive hip osteoarthritis, J. Mech. Behav. Biomed. Mater., 2016, 64, 86–93.
  • [25] UN K., BEVILL G., KEAVENY T.M., The effects of side-artifacts on the elastic modulus of trabecular bone, J. Biomech., 2006, 39(11), 1955–63.
  • [26] VAN DER PERRE G., LOWET G., Physical meaning of bone mineral content parameters and their relation to mechanical properties, Clin. Rheumatol., 1994, 13(Suppl. 1), 33–37.
  • [27] VASTEL L., MEUNIER A., SINEY H., SEDEL L., COURPIED J.P., Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts, Biomaterials, 2004, 25(11), 2105–10.
  • [28] WIEDING J., MICK E., WREE A., BADER R., Influence of three different preservative techniques on the mechanical properties of the ovine cortical bone, Acta Bioeng Biomech., 2015, 17(1), 137–46.
  • [29] ZIOUPOS P., CASINOS A., Cumulative damage and the response of human bone in two-step loading fatigue, J. Biomech., 1998, 31(9), 825–833
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54539494-c83e-4f26-962f-dcfd3af7c4d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.