PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle shape influence on elastic-plastic behaviour of particle-reinforced composites

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particle-reinforced composite materials very often provide unique and versatile properties. Modelling and prediction of effective heterogeneous material behaviour is a complex problem. However it is possible to estimate an influence of microstructure properties on effective macro material properties. Mentioned multi-scale approach can lead to better understanding of particle-reinforced composite behaviour. The paper is focused on prediction of an influence of particle shape on effective elastic properties, yield stress and stress distribution in particle-reinforced metal matrix composites. Design/methodology/approach: This research is based on usage of homogenization procedure connected with volume averaging of stress and strain values in RVE (Representative Volume Element). To create the RVE geometry Digimat-FE software is applied. Finite element method is applied to solve boundary value problem, in particular a commercial MSC.Marc software is used. Findings: Cylindrical particles provide the highest stiffness and yield stress while the lowest values of stiffness and yield stress are connected with spherical particles. On the other hand stress distribution in spherical particles is more uniform than in cylindrical and prismatic ones, which are more prone to an occurrence of stress concentration. Research limitations/implications: During this study simple, idealised geometries of the inclusions are considered, in particular sphere, prism and cylinder ones. Moreover, uniform size and uniform spatial distribution of the inclusions are taken into account. However in further work presented methodology can be applied to analysis of RVE that maps the real microstructure. Practical implications: Presented methodology can deal with an analysis of composite material with any inclusion shape. Predicting an effective composite material properties by analysis of material properties at microstructure level leads to better understanding and control of particle-reinforced composite materials behaviour. Originality/value: The paper in details presents in details an investigation of influence of inclusion shape on effective elastic-plastic material properties. In addition it describes the differences between stress distributions in composites with various inclusion shapes.
Rocznik
Strony
70--76
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • 1] N. Chwala, Y-L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Advanced Engineering Materials 3 (2001) 357-370.
  • [2] H.J. Böhm, A Short, Introduction to Continuum Micromechanics, in: H.J. Böhm (ed.) Mechanics of Microstructured Materials 1-40; CISM Courses and Lectures 464, Springer-Verlag, 2004, 1-40.
  • [3] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A 241 (1957) 376-396.
  • [4] N. Chwala, R.S. Sidhu, V.V. Ganesh, Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites, Acta Materialia 54 (2006) 1541-1548.
  • [5] O. Pierard, C. Gonzalez, J. Segurado, J. Llorca, I. Doghri, Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions, International Journal of Solids and Structures 44 (2007) 6945-6962.
  • [6] A. Rassol, H. Böhm, Effects of particle shape on the macroscopic and microscopic linear behaviors of particle reinforced composites, International Journal of Engineering Science 58 (2012) 21-24.
  • [7] P. Makowski, A. John, G. Kuś, G. Kokot, Multiscale modeling of the simplified trabecular bone structure, Proceedings of 18thInternational Conference Mechanika 2013, Kaunas, 2013.
  • [8] T. Czyż, G. Dziatkiewicz, P. Fedeliński, R. Górski, J. Ptaszny, Advanced computer modelling in micromechanics, Silesian University of Technology Press, Gliwice, 2013.
  • [9] M. Kamiński, Boundary element method homogenization of the periodic linear elastic fiber composites, Engineering Analysis with Boundary Elements 23 (1999) 815-823.
  • [10] DIGIMAT software documentation, e-Xstream engineering, 2012.
  • [11] F. Cavallini, The best isotropic approximation of an anisotropic Hooke’s law, Bollettiono di Geofisica Teorica ed Applicate 40 (1999) 1-18.
  • [12] A. Sevostianov, M. Kachanov, On approximate symmetries of the elastic properties and elliptic orthotropy, International Journal of Engineering Science 46 (2008) 211-223.
  • [13] T. Atanackovic, A. Guran, Theory of elasticity for scientists and engineers, Birkhäuser, Boston, 2000.
  • [14] Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory incomposite materials, Mechanics of Materials6 (1987) 147-157.
  • [15] T. Mori, K. Tanaka, Average stress in the matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica 21/5 (1973) 571-574.
  • [16] T. Mura, Micromechanics of defects in solids. Dordrecht, Martinus Nijhoff Publishers, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-545112eb-1423-4f1b-8517-d9f2990d6399
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.