PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Textural feature of EEG signals as a new biomarker of reward processing in Parkinson’s disease detection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Parkinson’s disease (PD) detection holds great potential for providing effective treatments, slowing the disease process, and improving the quality of patient’s life, but the development of a clinical accurate, generalized, robust and cost-effective method is a challenge. Method: In this paper, a novel PD detection method based on textural features of clinical electroencephalogram (EEG) signals has been proposed. In contrast to most existing methods, which do not consider reward positivity (RP)-relevant features for automatic PD detection, this method has focused on providing a novel EEG marker of RP using an enhanced time-frequency representation, texture descriptors based on Gray Level Co-occurrence Matrix, local binary pattern, and sparse coding classifier. Results: The proposed method has been evaluated using EEG signals recorded during a reinforcement-learning task from 28 patients with PD and 28 sex- and age matched healthy controls. Results have demonstrated that the proposed architecture reaches a high detection with an average accuracy rate of 100%, presenting better performance and outperforming previous techniques. Conclusions: it can provide a new solution to detect RP changes in PD and can offer obvious stability advantages on several clinical and technical variables (medication states, type of textural descriptors, reduced channels), suggesting a generalizable detection system.
Twórcy
  • Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
  • Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
Bibliografia
  • [1] Golbe LI, Mark MH, Sage J. Parkinson’s disease handbook. American Parkinson Disease Association; 2009.
  • [2] Dorsey ER, Elbaz A, Nichols E, Abbasi N, Abd-Allah F, Abdelalim A, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018;17(11):939–53.
  • [3] Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm 2017;124(8):901–5.
  • [4] Ghaderyan P, Fathi G. Inter-limb time-varying singular value: A new gait feature for Parkinson’s disease detection and stage classification. Measurement 2021;177:109249.
  • [5] Sonne J, Reddy V, Beato MR. Neuroanatomy, substantia nigra. 2019.
  • [6] Brown DR, Richardson SP, Cavanagh JF. An EEG marker of reward processing is diminished in Parkinson’s disease. Brain Res 2020;1727:146541.
  • [7] Walsh MM, Anderson JR. Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neurosci Biobehav Rev 2012;36(8):1870–84.
  • [8] Brown DR, Jackson TCJ, Cavanagh JF. The reward positivity is sensitive to affective liking. Cogn Affect Behav Neurosci 2022;22(2):258–67.
  • [9] Barua PD, Dogan S, Tuncer T, Baygin M, Acharya UR. Novel automated PD detection system using aspirin pattern with EEG signals. Comput Biol Med 2021;137:104841.
  • [10] Prabhu KS, Martis RJ. Diagnosis of Parkinson’s disease using computer aided tool based on EEG. In: IEEE 17th India Council International Conference (INDICON). IEEE; 2020. p. 1–4.
  • [11] Bhurane AA, Dhok S, Sharma M, Yuvaraj R, Murugappan M, Acharya UR. Diagnosis of Parkinson’s disease from electroencephalography signals using linear and self-similarity features. Expert Syst 2022;39(7):e12472.
  • [12] Silva G, Alves M, Cunha R, Bispo BC, Rodrigues PM. Parkinson disease early detection using EEG channels cross-correlation. Int J Appl Eng Res 2020;15:197–203.
  • [13] Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al. Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson’s disease. Int J Psychophysiol 2014;94(3):482–95.
  • [14] Saikia A, Hussain M, Barua AR, Paul S. Performance analysis of various neural network functions for Parkinson’s disease classification using EEG and EMG. Int J Innov Technol Explor Eng IJITEE 2019;9:3402–6.
  • [15] Ye Z, Heldmann M, Herrmann L, Brüggemann N, Münte TF. Altered alpha and theta oscillations correlate with sequential working memory in Parkinson’s disease. Brain Commun 2022.
  • [16] Chang K-H, French IT, LiangW-K, Lo Y-S,Wang Y-R, Cheng ML, et al. Evaluating the different stages of Parkinson’s disease using electroencephalography with Holo-Hilbert spectral analysis. Front Aging Neurosci 2022;14.
  • [17] Anjum MF, Dasgupta S, Mudumbai R, Singh A, Cavanagh JF, Narayanan NS. Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease. Parkinsonism Relat Disord 2020;79:79–85.
  • [18] Chaturvedi M, Hatz F, Gschwandtner U, Bogaarts JG, Meyer A, Fuhr P, et al. Quantitative EEG (QEEG) measures differentiate Parkinson’s disease (PD) patients from healthy controls (HC). Front Aging Neurosci 2017;9:3.
  • [19] Guo G. Diagnosing Parkinson’s disease using multimodal physiological signals. In: Human Brain and Artificial Intelligence: Second International Workshop, HBAI 2020: Held in Conjunction with IJCAI-PRICAI 2020, Yokohama, Japan, January 7, 2021: Revised Selected Papers. Springer; 2021. p. 125.
  • [20] Yuvaraj R, Rajendra Acharya U, Hagiwara Y. A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals. Neural Comput Appl 2018;30(4):1225–35.
  • [21] de Oliveira APS, de Santana MA, Andrade MKS, Gomes JC, Rodrigues MCA, dos Santos WP. Early diagnosis of Parkinson’s disease using EEG, machine learning and partial directed coherence. Res Biomed Eng 2020;36(3):311–31.
  • [22] Yuvaraj R, Murugappan M. Hemispheric asymmetry nonlinear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients. Cogn Neurodyn 2016;10(3):225–34.
  • [23] Railo H, Suuronen I, Kaasinen V, Murtojarvi M, Pahikkala T, Airola A. Resting state EEG as a biomarker of Parkinson’s disease: Influence of measurement conditions. BioRxiv 2020.
  • [24] Conti M, Bovenzi R, Garasto E, Schirinzi T, Placidi F, Mercuri NB, et al. Brain functional connectivity in de novo Parkinson’s disease patients based on clinical EEG. Front Neurol 2022;13:369.
  • [25] Gong R, Mühlberg C, Wegscheider M, Fricke C, Rumpf J-J, Knösche TR, et al. Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson’s disease. medRxiv 2021.
  • [26] Mano T, Kinugawa K, Ozaki M, Kataoka H, Sugie K. Neural synchronization analysis of electroencephalography coherence in patients with Parkinson’s disease-related mild cognitive impairment. Clin Parkinsonism Relat Disord 2022;6:100140.
  • [27] Lee S-B, Kim Y-J, Hwang S, Son H, Lee SK, Park K-I, et al. Predicting Parkinson’s disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism Relat Disord 2022;95:77–85.
  • [28] Aljalal M, Aldosari SA, AlSharabi K, Abdurraqeeb AM, Alturki FA. Parkinson’s disease detection from resting-state EEG signals using common spatial pattern, entropy, and machine learning techniques. Diagnostics 2022;12:1033.
  • [29] Liu G, Zhang Y, Hu Z, Du X, Wu W, Xu C, et al. Complexity analysis of electroencephalogram dynamics in patients with Parkinson’s disease. Parkinsons Dis 2017;2017:1–9.
  • [30] Han C-X, Wang J, Yi G-S, Che Y-Q. Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn 2013;7(4):351–9.
  • [31] Khare SK, Bajaj V, Acharya UR. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern Biomed Eng 2021;41(2):679–89.
  • [32] Meignen S, Oberlin T, Wu H-T. Time-frequency reassignment and synchrosqueezing. IEEE Signal Process Mag 2013;30:32–41.
  • [33] Meignen S, Oberlin T, Pham D-H. Synchrosqueezing transforms: From low-to high-frequency modulations and perspectives. CR Phys 2019;20(5):449–60.
  • [34] Akan A, Karabiber Cura O. Time-frequency signal processing: Today and future. Digital Signal Process 2021;119:103216.
  • [35] Cura OK, Akan A. Classification of epileptic EEG signals using synchrosqueezing transform and machine learning. Int J Neural Syst 2021;31:2150005.
  • [36] Mamli S, Kalbkhani H. Gray-level co-occurrence matrix of Fourier synchro-squeezed transform for epileptic seizure detection. Biocybern Biomed Eng 2019;39:87–99.
  • [37] Costa M, Priplata A, Lipsitz L, Wu Z, Huang N, Goldberger AL, et al. Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance–based therapy. EPL (Europhys Lett) 2007;77:68008.
  • [38] Railo H, Suuronen I, Kaasinen V, Murtojärvi M, Pahikkala T, Airola A. Resting state EEG as a biomarker of Parkinson’s disease: Influence of measurement conditions. bioRxiv 2020.
  • [39] Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, et al. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 2020;32:10927–33.
  • [40] Xu S, Wang Z, Sun J, Zhang Z, Wu Z, Yang T, et al. Using a deep recurrent neural network with EEG signal to detect Parkinson’s disease. Ann Transl Med 2020;8.
  • [41] Lee S, Hussein R, McKeown MJ. A deep convolutional-recurrent neural network architecture for Parkinson’s disease EEG classification. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE; 2019. p. 1–4.
  • [42] Li Y, Ngom A. Classification approach based on non-negative least squares. Neurocomputing 2013;118:41–57.
  • [43] Ghaderyan P, Abbasi A. Sparse coding classification and cepstral singular value for cognitive workload estimation. Comput Electr Eng 2021;91:107031.
  • [44] Ghaderyan P, Beyrami SMG. Neurodegenerative diseases detection using distance metrics and sparse coding: A new perspective on gait symmetric features. Comput Biol Med 2020:103736.
  • [45] Beyrami SMG, Ghaderyan P. A robust, cost-effective and noninvasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis. Measurement 2020;156:107579.
  • [46] Ghaderyan P, Abbasi A, Saber S. A new algorithm for kinematic analysis of handwriting data; towards a reliable handwriting-based tool for early detection of Alzheimer’s disease. Expert Syst Appl 2018;114:428–40.
  • [47] Saljuqi M, Ghaderyan P. A novel method based on matching pursuit decomposition of gait signals for Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease detection. Neurosci Lett 2021:136107.
  • [48] Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern 1973:610–21.
  • [49] Mousavi SM, Asgharzadeh-Bonab A, Ranjbarzadeh R. Time-frequency analysis of EEG signals and GLCM features for depth of anesthesia monitoring. Comput Intell Neurosci 2021;2021.
  • [50] Şengür A, Guo Y, Akbulut Y. Time-frequency texture descriptors of EEG signals for efficient detection of epileptic seizure. Brain Inf 2016;3:101–8.
  • [51] Cavanagh JF, Napolitano A, Wu C, Mueen A. The patient repository for EEG data + computational tools (PRED+CT). Front Neuroinf 2017;11.
  • [52] Nolan H, Whelan R, Reilly RB. FASTER: fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods 2010;192:152–62.
  • [53] Gao S. Gray level co-occurrence matrix and extreme learning machine for Alzheimer’s disease diagnosis. Int J Cogn Comput Eng 2021;2:116–29.
  • [54] Oghaz MM, Maarof MA, Rohani MF, Zainal A, Shaid SZM. An optimized skin texture model using gray-level co-occurrence matrix. Neural Comput Appl 2019;31:1835–53.
  • [55] Oberlin T, Meignen S, Perrier V. The Fourier-based synchrosqueezing transform. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2014. p. 315–9.
  • [56] Ozdemir MA, Cura OK, Akan A. Epileptic EEG classification by using time-frequency images for deep learning. Int J Neural Syst 2021:2150026.
  • [57] Wang P, Qiao H, Zhang Y, Li Y, Feng Q, Chen K. Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Constr Build Mater 2020;255:119373.
  • [58] Ghaderyan P, Ghoreshi Beyrami SM. Neurodegenerative diseases detection using distance metrics and sparse coding: A new perspective on gait symmetric features. Comput Biol Med 2020;120:103736.
  • [59] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;24:971–87.
  • [60] Pal A, Pegwal N, Behari M, Sharma R. High delta and gamma EEG power in resting state characterise dementia in Parkinson’s patients. Biomarkers Neuropsychiatry 2020;3:100027.
  • [61] Guo G, Wang S, Wang S, Zhou Z, Pei G, Yan T. Diagnosing Parkinson’s disease using multimodal physiological signals. In: International Workshop on Human Brain and Artificial Intelligence. Springer; 2021. p. 125–36.
  • [62] Kamalakannan N, Balamurugan SPS, Shanmugam K. A novel approach for the early detection of Parkinson’s disease using EEG signal. Technology (IJEET) 2021;12:80–95.
  • [63] Lee S, Hussein R, Ward R, Wang JZ, McKeown MJ. A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson’s disease. medRxiv 2021.
  • [64] Emamzadeh-Hashemi EA, Mahdizadeh A, Mirian MS, Lee S, McKeown MJ. Deep transfer learning for parkinson’s disease monitoring by image-based representation of resting-state EEG using directional connectivity. Algorithms 2022;15:5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5450d8a5-aeab-4926-bf2b-d29870fb96d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.