PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of modifying the hypoeutectic AlMg5Si2Mn alloy via addition of Al10Sr and/or Al5TiB

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work demonstrates that the combined addition of Al10Sr and Al5TiB master alloys to the AlMg5Si2Mn effectively refines the grain microstructure and partially modifies the eutectic Mg2Si phase. Thorough spectroscopic characterization reveals that the grain refinement effect is due to Al3Ti particles acting as nucleation sites for α-Al grains, and the increased nucleation temperature of α-Al is due to Al10Sr addition. It is also determined that TiB2 particles can act as nucleation substrates for the primary Mg2Si phase. The prepared alloy sample with the finest microstructure (treated with both Al10Sr and Al5TiB) exhibits the greatest corrosion resistance among all tested samples.
Rocznik
Strony
16--31
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44‑100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44‑100 Gliwice, Poland
autor
  • Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Street, 44‑100 Gliwice, Poland
autor
  • Materials Research Laboratory, Silesian University of Technology, 18A Konarskiego Street, 44‑100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44‑100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44‑100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, University of Zilina, Veľký diel, 010 26 Zilina, Slovak Republic
Bibliografia
  • [1] Snopiński P, Król M, Tański T, Krupińska B. Effect of cooling rate on microstructural development in alloy ALMG9. J Therm Anal Calorim. 2018. https ://doi.org/10.1007/s1097 3-018-7313-9.
  • [2] Nemour H, Mourad Ibrahim D, Triki A. The effect of heavy cold plastic deformation on the non-isothermal kinetics and the precipitation sequence of metastable phases in an Al-Mg-Si alloy. J Therm Anal Calorim. 2016. https ://doi.org/10.1007/s10973-015-4915-3.
  • [3] Snopiński P, Król M. Microstructure, mechanical properties and strengthening mechanism analysis in an AlMg5 aluminium alloy processed by ECAP and subsequent ageing. Metals. 2018. https://doi.org/10.3390/met81 10969.
  • [4] Wang HY, Chen L, Liu B, Li XR, Wang JG, Jiang QC. Heterogeneous nucleation of Mg2Si on Sr11Sb10 nucleus in Mg-x(3.5, 5 wt.%)Si-1Al alloys. Mater Chem Phys. 2012. https ://doi.org/10.1016/j.match emphy s.2012.04.058.
  • [5] Malekan A, Emamy M, Rassizadehghani J, Emami AR. The effect of solution temperature on the microstructure and tensile properties of Al-15%Mg2Si composite. Mater Des. 2011. https://doi.org/10.1016/j.matde s.2011.01.020.
  • [6] Qin QD, Zhao YG. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification. J Alloys Compd. 2008. https ://doi.org/10.1016/j.jallc om.2007.08.037.
  • [7] Qin QD, Zhao YG, Liang YH, Zhou W. Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite. J Alloys Compd. 2005;399:106–9. https ://doi.org/10.1016/J.JALLC OM.2005.03.015.
  • [8] Soltani N, Jafari Nodooshan HR, Bahrami A, Pech-Canul MI, Liu W, Wu G. Effect of hot extrusion on wear properties of Al-15wt.% Mg2Si in situ metal matrix composites. Mater Des. 2014. https ://doi.org/10.1016/j.matde s.2013.07.084.
  • [9] Lee YS, Cha JH, Kim SH, Lim CY, Kim HW. Effect of prehomogenization deformation treatment on the workability and mechanical properties of AlMg5Si2Mn alloy. Mater Sci Eng A. 2017. https ://doi.org/10.1016/j.msea.2016.12.107.
  • [10] Wang KY, Da Zhao R, Wu FF, Wu XF, Chen MH, Xiang J, Chen SH. Improving microstructure and mechanical properties of hypoeutectic Al-Mg2Si alloy by Gd addition. J Alloys Compd. 2020. https ://doi.org/10.1016/j.jallc om.2019.15217 8.
  • [11] Ghorbani MR, Emamy M, Nemati N. Microstructural and mechanical characterization of Al-15%Mg2Si composite containing chromium. Mater Des. 2011. https ://doi.org/10.1016/j.matde s.2011.04.020.
  • [12] Khorshidi R, Honarbakhsh Raouf A, Emamy M, Campbell J. The study of Li effect on the microstructure and tensile properties of cast Al-Mg2Si metal matrix composite. J Alloys Compd. 2011. https ://doi.org/10.1016/j.jallc om.2011.07.012.
  • [13] Emamy M, Nemati N, Heidarzadeh A. The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al-15% Mg2Si composite. Mater Sci Eng A. 2010. https ://doi.org/10.1016/j.msea.2010.01.063.
  • [14] Ren B, Liu Z, Zhao R, Zhang T, Liu Z, Wang M, Weng Y. Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Si composites. Trans Nonferrous Met Soc China. 2010;20:1367–73. https ://doi.org/10.1016/S1003-6326(09)60306 -X.
  • [15] Emamy M, Khorshidi R, Raouf AH. The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite. Mater Sci Eng A. 2011. https ://doi.org/10.1016/j.msea.2011.02.010.
  • [16] Shin SS, Kim ES, Yeom GY, Lee JC. Modification effect of Sr on the microstructures and mechanical properties of Al-10.5Si-2.0Cu recycled alloy for die casting. Mater Sci Eng A. 2012. https ://doi.org/10.1016/j.msea.2011.10.076.
  • [17] Li C, Liu X, Zhang G. Heterogeneous nucleating role of TiB2 or AlP/TiB2 coupled compounds on primary Mg2Si in Al–Mg–Si alloys. Mater Sci Eng A. 2008;497:432–7. https ://doi.org/10.1016/J.MSEA.2008.07.034.
  • [18] Qin QD, Zhao YG, Liu C, Cong PJ, Zhou W. Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J Alloys Compd. 2008. https ://doi.org/10.1016/j.jallc om.2006.12.074.
  • [19] Tebib M, Samuel AM, Ajersch F, Chen XG. Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy. Mater Charact. 2014. https ://doi.org/10.1016/j.match ar.2014.01.005.
  • [20] Tang S, Zhou J, Tian C, Yang Y. Morphology modification of Mg2Si by Sr addition in Mg-4%Si alloy. Trans Nonferrous Met Soc China. 2011;21:1932–6. https ://doi.org/10.1016/S1003-6326(11)60952 -7.
  • [21] Król M. Effect of grain refinements on the microstructure and thermal behaviour of Mg–Li–Al alloy. J Therm Anal Calorim. 2018;133:237–46. https ://doi.org/10.1007/s1097 3-018-7223-x.
  • [22] Król M. Magnesium–lithium alloys with TiB and Sr additions. J Therm Anal Calorim. 2019;138:4237–45. https ://doi.org/10.1007/s1097 3-019-08341 -2.
  • [23] Mohanty PS, Gruzleski JE. Mechanism of grain refinement in aluminium. Acta Metall Mater. 1995. https ://doi.org/10.1016/0956-7151(94)00405 -7.
  • [24] Vinod Kumar GS, Murty BS, Chakraborty M. Effect of TiAl3 particles size and distribution on their settling and dissolution behaviour in aluminium. J Mater Sci. 2010. https ://doi.org/10.1007/s1085 3-010-4284-z.
  • [25] Birol Y. Interaction of grain refinement with B and modification with Sr in aluminium foundry alloys. Mater Sci Technol. 2012. https ://doi.org/10.1179/17432 84711 Y.00000 00081 .
  • [26] Bian X, Zhang Z, Liu X. Effect of strontium modification on hydrogen content and porosity shape of Al-Si alloys. Mater Sci Forum. 2000. https ://doi.org/10.4028/www.scien tific .net/msf.331-337.361.
  • [27] Nuckowski PM, Snopiński P, Wróbel T. Influence of plastic strain accumulation in continuous ingots during ECAP on structure and recrystallization temperature of AlCu4MgSi alloy. Materials. 2020;13:576. https ://doi.org/10.3390/ma130 30576.
  • [28] Hu Z, Wan L, Lü S, Zhu P, Wu S. Research on the microstructure, fatigue and corrosion behavior of permanent mold and die cast aluminum alloy. Mater Des. 2014. https ://doi.org/10.1016/j.matdes.2013.10.012.
  • [29] Yi H, Ma N, Zhang Y, Li X, Wang H. Effective elastic moduli of Al-Si composites reinforced in situ with TiB2 particles. Scr Mater. 2006. https ://doi.org/10.1016/j.scrip tamat .2005.11.070.
  • [30] Cho YH, Lee HC, Oh KH, Dahle AK. Effect of strontium and phosphorus on eutectic Al-Si nucleation and formation of β-Al5FeSi in hypoeutectic Al-Si foundry alloy. Metall Mater Trans A Phys Metall Mater Sci. 2008. https ://doi.org/10.1007/s1166 1-008-9580-8.
  • [31] Liao H, Sun G. Mutual poisoning effect between Sr and B in Al-Si casting alloys. Scr Mater. 2003. https ://doi.org/10.1016/S1359 -6462(02)00648 -6.
  • [32] Farahany S, Ourdjini A, Idris MH, Thai LT. Poisoning effect of bismuth on modification behaviour of strontium in LM25 alloy. Bull Mater Sci. 2011. https ://doi.org/10.1007/s1203 4-011-0239-5.
  • [33] Golbahar B, Samuel E, Samuel AM, Doty HW, Samuel FH. On thermal analysis, macrostructure and microstructure of grain refined al–si–mg cast alloys: role of sr addition. Int J Cast Met Res. 2014. https ://doi.org/10.1179/17431 33614 Y.00000 00109.
  • [34] Nordin NA, Farahany S, Ourdjini A, Abu Bakar TA, Hamzah E. Refinement of Mg2Si reinforcement in a commercial Al-20%Mg2Si in-situ composite with bismuth, antimony and strontium. Mater Charact. 2013. https ://doi.org/10.1016/j.matchar.2013.10.007.
  • [35] Du R, Yuan D, Li F, Zhang D, Wu S, Lü S. Effect of in-situ TiB2 particles on microstructure and mechanical properties of Mg2Si/Al composites. J Alloys Compd. 2019;776:536–42. https ://doi.org/10.1016/J.JALLC OM.2018.10.301.
  • [36] Wang F, Eskin D, Mi J, Connolley T, Lindsay J, Mounib M. A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater. 2016;116:354–63. https ://doi.org/10.1016/J.ACTAM AT.2016.06.056.
  • [37] Srinivasan S, Desch PB, Schwarz RB. Metastable phases in the Al3X(X = Ti, Zr, and Hf) intermetallic system. Scr Metall Mater. 1991;25:2513–6. https ://doi.org/10.1016/0956-716X(91)90059 -A.
  • [38] Tański T, Snopiński P, Prusik K, Sroka M. The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy. Mater Charact. 2017. https ://doi.org/10.1016/j.match ar.2017.09.039.
  • [39] Sun J, Wang X, Guo L, Zhang X, Wang H. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents. J Mater Res. 2019. https ://doi.org/10.1557/jmr.2018.469.
  • [40] Chen L, Wang HY, Li YJ, Zha M, Jiang QC. Morphology and size control of octahedral and cubic primary Mg2Si in an Mg-Si system by regulating Sr contents. CrystEngComm. 2014. https ://doi.org/10.1039/c3ce4 1646a.
  • [41] Nafisi S, Ghomashchi R. Combined grain refining and modification of conventional and rheo-cast A356 Al-Si alloy. Mater Charact. 2006. https ://doi.org/10.1016/j.match ar.2006.03.016.
  • [42] Farahany S, Ghandvar H, Bozorg M, Nordin A, Ourdjini A, Hamzah E. Role of Sr on microstructure, mechanical properties, wear and corrosion behaviour of an Al–Mg2Si–Cu in-situ composite. Mater Chem Phys. 2020. https ://doi.org/10.1016/j.match emphys.2019.12195 4.
  • [43]. Farahany S, Ourdjini A, Idris MH. The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al-Si alloys. J Therm Anal Calorim. 2012. https ://doi.org/10.1007/s1097 3-011-1708-1.
  • [44] Zeng FL, Wei ZL, Li JF, Li CX, Tan X, Zhang Z, Zheng ZQ. Corrosion mechanism associated with Mg2Si and Si particles in Al-Mg-Si alloys. Trans Nonferrous Met Soc China. 2011. https ://doi.org/10.1016/S1003 -6326(11)61092 -3.
  • [45] Li Z, Li C, Gao Z, Liu Y, Liu X, Guo Q, Yu L, Li H. Corrosion behavior of Al–Mg2Si alloys with/without addition of Al–P master alloy. Mater Charact. 2015;110:170–4. https ://doi.org/10.1016/J. MATCH AR.2015.10.028.
  • [46] Straumal BB, Kogtenkova O, Zieba P. Wetting transition of grain-boundary triple junctions. Acta Mater. 2008. https ://doi.org/10.1016/j.actam at.2007.10.043.
  • [47] Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS. Wetting of grain boundaries in Al by the solid Al3Mg2 phase. J Mater Sci. 2010. https ://doi.org/10.1007/s10853-009-4014-6.
  • [48] Li Z, Li C, Liu Y, Yu L, Guo Q, Li H. Effect of heat treatment on microstructure and mechanical property of Al-10%Mg2Si alloy. J Alloys Compd. 2016. https ://doi.org/10.1016/j.jallc om.2015.12.128.
  • [49] Li C, Sun J, Li Z, Gao Z, Liu Y, Yu L, Li H. Microstructure and corrosion behavior of Al–10%Mg2Si cast alloy after heat treatment. Mater Charact. 2016. https ://doi.org/10.1016/j.match ar.2016.10.027.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-545046ea-d498-4eb7-ac90-0740cfaab867
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.