PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Environmentally Friendly Technologies in the Construction of Road Surfaces, with the Aim of the Rational Distribution of Natural Resources in Russia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of research in this article is recycled plastics as a leading component in pavement construction. The aim of the work was to evaluate innovative methods of using nature-saving technologies in the construction of road surfaces, with the aim of rational distribution of natural resources. The advantages of asphalt pavement are cost-effectiveness, recycling, ease of maintenance, the ability to lay asphalt on the old layer, and good adhesion. Production of asphalt with the addition of plastic is 3% more expensive than usual, but its environmental friendliness and prospects fully compensate for the increased production costs.
Rocznik
Strony
30--35
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Federal State Budget Educational Institution of Higher Education, Industrial University of Tyumen, Volodarskogo street 38, 652001 Tyumen, Russia
Bibliografia
  • 1. Abou-Senna H., Radwan E., Westerlund K., Cooper C.D. 2013. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway. Journal of the Air & Waste Management Association, 63(7), 819–831.
  • 2. Arabani M., Mirabdolazimi S.M. 2011. Experimental investigation of the fatigue behaviour of asphalt concrete mixtures containing waste iron powder. J. of Materials Science and Engineering, 528(10–11), 3866–3870.
  • 3. Boguslavsky L.A. Plastic Roads. Materials of the XII International Student Scientific Conference “Student Scientific Forum”. https://scienceforum.ru/2020/article/2018019201”> https://scienceforum.ru/2020/article/2018019201
  • 4. Csikós A., Varga I. 2012. Real-time modeling and control objective analysis of motorway emissions. Procedia-Social and Behavioral Sciences, 54, 1027–1036.
  • 5. Dolia A.G., Shatvorian D.A., Smirnova D.V., Zhukov I.P. 2017. Effektivnoe ispol’zovanie porod shakhtnykh otvalov vdorozhnom stroitel’stve. Efficient use of mine waste rock in road construction. Vestnik Donbasskoi natsional’noi akademii stroitel’stva i arkhitektury, 2(124), 94–101.
  • 6. Federal environmental regulatory documents. 2013. Quantitative chemical analysis of soils. Methodology for measuring the mass fraction of petroleum products in soil and soil samples, 16(1–2), 21–98.
  • 7. Gao J., Wang H., Bu Y., You Z., Hasan M.R.M., Irfan M. 2018. Effects of coarse aggregate angularity on the microstructure of asphalt mixture. Construction and Building Materials, 183, 472–484. https://doi.org/10.1016/j.conbuildmat.2018.06.170
  • 8. https://macrebur.com/ – MacRebur . The Plastic Road Company
  • 9. Kogbara R.B., Masad E.A., Kassem E., Scarpas A.T., Anupam K. 2016. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements. Construction and Building Materials, 114, 602–617. https://doi.org/10.1016/j.conbuildmat.2016.04.002.
  • 10. Kotliarskii E.V., Kochnev V.I., Davliatova D.I. 2015. Avtomatizirovannoe proektirovanie asfal’tobetonnykh smesei s zadannymi svoistvami. Computer-aided design of asphalt concrete mixtures with specified properties. Nauka i tekhnika v dorozhnoi otrasli, 1(71), 27–29.
  • 11. Kuang D., Zhang B., Jiao Y., Fang J., Chen H., Wang L. 2017. Impact of particle morphology on aggregate-asphalt interface behavior. Construction and Building Materials, 132, 142–149. https://doi.org/10.1016/j.conbuildmat.2016.11.132.
  • 12. Li I., Li P., Su J., Xue Y., Rao W. 2019. Effect of aggregate contact characteristics on densification properties of asphalt mixture. Construction and Building Materials, 204, 691–702. https://doi.org/10.1016/j.conbuildmat.2019.01.023.
  • 13. Liu P., Hu J., Falla G.C., Wang D., Leischner S., Oeser M. 2019. Primary investigation on the relationship between microstructural characteristics and the mechanical performance of asphalt mixtures with different compaction degrees. Construction and Building Materials, 223, 784–793. https://doi.org/10.1016/j.conbuildmat.2019.07.039.
  • 14. Lysyannikov A.V., Egorov A.V., Lysyannikova N.N., Shram V.G., Kovaleva M.A., Lynev A.S., Kaizer Y.F. 2019. Polymer materials from recycled plastic in road construction. Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, 1399, 4.
  • 15. Maciejewski M. 2010. A comparison of microscopic traffic flow simulation systems for an urban area. Transport Problems, 5, 27–38.
  • 16. Niu S., Ning Y., Lu C., Han, K., Yu H., Zhou Y. 2018. Esterification of Oleic Acid to Produce Biodiesel Catalyzed by Sulfonated Activated Carbon from Bamboo. Journal Energy Conversion and Management, 163, 59–65.
  • 17. Pugin K.G., Iushkov V.S. 2017. Otkhody metallurgicheskikh predpriiatii dlia sozdaniia tsvetnogo asfal’tobetona. Waste from metallurgical enterprises for the creation of colored asphalt concrete. Ekologiia i promyshlennost. Rossii, 21(5), 4–7.
  • 18. Simakova T.V., Skipin L.N., Evtushkova E.P., et al. 2018. Monitoring of reclaimed land in Tyumen region. Espacios, 39(14), 22.
  • 19. Yusuf M. 2018. Determination of Free Fatty Acid and Saponification Number at PT. Oil Palm Research Center, Medan. Sustainable Cities and Society Journal, 41, 220–226
  • 20. Zhang W. 2017. Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-theart review based on application in the United States. International Journal of Pavement Research and Technology, 10(5), 434–445. https://doi.org/10.1016/j.ijprt.2017.07.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-544b43f5-bcb6-4d3f-89e5-d32bcf7c02e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.