PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Homogenization of foil windings with globally supported polynomial shape functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In conventional finite element simulations, foil windings with thin foils and with a large number of turns require many mesh elements. This renders models quickly computationally infeasible. This paper uses a homogenized foil winding model and approximates the voltage distribution in the foil winding domain by globally supported polynomials. This way, the small-scale structure in the foil winding domain does not have to be resolved by the finite element mesh. The method is validated successfully for a stand-alone foil winding example and for a pot inductor example. Moreover, a transformer equipped with a foil winding at its primary side is simulated using a field-circuit coupled model.
Rocznik
Strony
77--85
Opis fizyczny
Bibliogr. 12 poz., rys., wykr., wz.
Twórcy
  • Institute for Accelerator Science and Electromagnetic Fields (TEMF), Technical University of Darmstadt Schloßgartenstraße 8, 64289 Darmstadt, Germany
  • Graduate School of Excellence Computational Engineering Technical University of Darmstadt Dolivostraße 15, 64293 Darmstadt, Germany
  • Institute for Accelerator Science and Electromagnetic Fields (TEMF), Technical University of Darmstadt Schloßgartenstraße 8, 64289 Darmstadt, Germany
  • Graduate School of Excellence Computational Engineering Technical University of Darmstadt Dolivostraße 15, 64293 Darmstadt, Germany
  • Institute for Accelerator Science and Electromagnetic Fields (TEMF), Technical University of Darmstadt Schloßgartenstraße 8, 64289 Darmstadt, Germany
  • Graduate School of Excellence Computational Engineering Technical University of Darmstadt Dolivostraße 15, 64293 Darmstadt, Germany
Bibliografia
  • [1] Barrios E.L., Andoni U., Ursúa A., Marroyo L., Sanchis P., High-frequency power transformers with foil windings: maximum interleaving and optimal design, IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5712–5723 (2015), DOI: 10.1109/TPEL.2014.2368832.
  • [2] Kazimierczuk M., Wojda R., Foil Winding Resistance and Power Loss in Individual Layers of Inductors, International Journal of Electronics and Telecommunications, vol. 56, no. 3, pp. 237–246 (2010), DOI: 10.2478/v10177-010-0031-2.
  • [3] Leuenberger D., Biela J., Semi-Numerical Method for Calculation of Loss in Foil Windings Exposed to an Air-Gap Field, IEEJ Journal of Industry Applications, vol. 4, no. 4, pp. 301–309 (2015), DOI: 10.1541/ieejjia.4.301.
  • [4] Gyselinck J., Dular P., Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations, IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1416–1419 (2005), DOI: 10.1109/tmag.2005.844534.
  • [5] Bossavit A., Effective penetration depth in spatially periodic grids: a novel approach to homogenization, International Symposium on Electromagnetic Compatibility, Rome, Italy, pp. 859–864 (1994).
  • [6] Valdivieso C.A., Meunier G., Ramdane B., Gyselinck J., Guerin C., Sabariego R.V., Time-domain homogenization of foil windings in 2-D axisymmetric finite-element models, IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1264–1269 (2021), DOI: 10.1109/TPWRD.2020.3005225.
  • [7] De Gersem H., Hameyer K., A finite element model for foil winding simulation, IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3427–3432 (2001), DOI: 10.1109/20.952629.
  • [8] Dular P., Geuzaine C., Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling, IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 633–636 (2002), DOI: 10.1109/20.996165.
  • [9] Paakkunainen E., Bundschuh J., Cortes Garcia I., De Gersem H., Schöps S., A Stabilized Circuit-Consistent Foil Winding Model, unpublished (2023), DOI: 10.48550/arXiv.2306.13477.
  • [10] Schöps S., De Gersem H., Weiland T., Winding functions in transient magnetoquasistatic field-circuit coupled simulations, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32, no. 6, pp. 2063–2083 (2013), DOI: 10.1108/compel-01- 2013-0004.
  • [11] Bundschuh J., De Gersem H., Späck-Leigsnering Y., Continuum Models and Analytical Solutions for Foil Windings, XXVII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Hamburg, Germany, pp. 26–27 (2022).
  • [12] Bundschuh J., Ruppert M.G., Späck-Leigsnering Y., Pyrit: A finite element based field simulation software written in Python, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (2023), DOI: 10.1108/COMPEL-01-2023-0013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-544a0c60-bd1d-41c4-97c6-cd9721ce3f7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.