PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On applications of quasi-Abelian Cayley graphs to Denial-of-Service protection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the problem of designing secure control for networked multi-agent systems (MASs) under Denial-of-Service (DoS) attacks. We propose a constructive design method based on the interaction topology. The MAS with a non-attack communication topology, modelled by quasi-Abelian Cayley graphs subject to DoS attacks, can be represented as a switched system. Using switching theory, we provide easily implementable sufficient conditions for the networked MAS to remain asymptotically stable despite DoS attacks. Our results are applicable to both continuous-time and discrete-time systems, as well as to discrete-time systems with variable steps or systems that combine discrete and continuous times.
Rocznik
Strony
art. no. e149232
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Bialystok University of Technology, Wiejska 45, 15-351 Białystok, Poland
  • Bialystok University of Technology, Wiejska 45, 15-351 Białystok, Poland
Bibliografia
  • [1] A. Cetinkaya, H. Ishii, and T. Hayakawa, “An overview on denial-of-service attacks in control systems: attack models and security analyses,” Entropy, vol. 21, no. 2, p. 210, 2019, doi: 10.3390/e21020210.
  • [2] B. Chang, X. Mu, Z. Yang, and J. Fang, “Event-based secure consensus of muti-agent systems under asynchronous DoS attacks,” Appl. Math. Comput., vol. 401, p. 126120, 2021, doi: .
  • [3] Z. Feng and G. Hu, “Secure cooperative event-triggered control of linear multiagent systems under DoS attacks,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3, pp. 741–752, 2020, doi: 10.1109/TCST.2019.2892032.
  • [4] Y. Liu, “Secure control of networked switched systems with random DoS attacks via event-triggered approach,” Int. J. Control Autom. Syst., vol. 18, pp. 2572–2579, 2020.
  • [5] J. Liu and X. Wang, “Secure consensus control for multi-agent systems subject to consecutive asynchronous DoS attacks,” Int. J. Control Autom. Syst., vol. 21, pp. 61–70, 2023, doi: 10.1007/s12555-021-0564-4.
  • [6] H. Liu, “Event-triggering-based leader-following bounded consensus of multi-agent systems under DoS attacks,” Commun. Nonlinear Sci. Numer. Simul., vol. 89, p. 105342, 2020.
  • [7] P. Wang, G. Wen, and W. Yu, “Consensus tracking of linear multi-agent systems with undirected switching communication topologies under impulsive disturbances,” in 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018, pp. 815–819.
  • [8] Y. Xu, M. Fang, Z.-G. Wu, Y.-J. Pan, M. Chadli, and T. Huang, “Input-based event-triggering consensus of multiagent systems under denial-of-service attacks,” IEEE Trans. Syst. Man Cybern., vol. 50, no. 4, pp. 1455–1464, 2020, doi: 10.1109/TSMC.2018.2875250.
  • [9] Y. Yang, H. Xu, and D. Yue, “Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks,” IEEE Trans. Circuits Syst. I, Regul. Pap., vol. 66, no. 8, pp. 3089–3099, 2019, doi: 10.1109/TCSI.2019.2904747.
  • [10] L. Zha, J. Liu, and J. Cao, “Resilient event-triggered consensus control for nonlinear muti-agent systems with DoS attacks,” J. Franklin Inst., vol. 356, no. 13, pp. 7071–7090, 2019.
  • [11] H. Zhang, Y. Qi, J. Wu, L. Fu, and L. He, “DoS attack energy management against remote state estimation,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 383–394, 2018, doi: 10.1109/TCNS.2016.2614099.
  • [12] P.H.S. Coutinho, I. Bessa, P.S.P. Pessim, and R.M. Palhares, “A switching approach to event-triggered control systems under denial-of-service attacks,” Nonlinear Anal.-Hybrid Syst., vol. 50, p. 101383, 2023.
  • [13] C. De Persis and P. Tesi, “Input-to-state stabilizing control under denial-of-service,” IEEE Trans. Automat. Control, vol. 60, no. 11, pp. 2930–2944, 2015.
  • [14] C. De Persis and P. Tesi, “Networked control of nonlinear systems under denial-of-service,” Syst. Control Lett., vol. 96, pp. 124–131, 2016.
  • [15] V.S. Dolk, P. Tesi, C. De Persis, and W.P.M.H. Heemels, “Event-triggered control systems under denial-of-service attacks,” IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 93–105, 2016.
  • [16] G. Zhai, H. Lin, A.N. Michel, and K. Yasuda, “Stability analysis for switched systems with continuous-time and discrete-time subsystems,” in Proceedings of the 2004 American Control Conference, Boston, USA, 2004, vol. 5, pp. 4555–4560, doi: 10.23919/ACC.2004.1384029.
  • [17] G. Eisenbarth, J.M. Davis, and I. Gravagne, “Stability of simultaneously triangularizable switched systems on hybrid domains,” Electron. J. Differ. Equ., vol. 63, pp. 1–19, 2014.
  • [18] F.Z. Taousser, M. Defoort, and M. Djemai, “Stability analysis of a class of switched linear systems on non-uniform time domains,” Syst. Control Lett., vol. 74, pp. 24–31, 2014, doi: 10.1016/j.sysconle.2014.09.012.
  • [19] A.V. Kelarev, “On undirected Cayley graphs,” Australas. J. Comb., vol. 25, pp. 73–78 2002.
  • [20] T. Biyikoglu, J. Leydold, and P.F. Stadler, Laplacian eigenvectors of graphs: Perron-Frobenius and Faber-Krahn type theorems, Springer Berlin Heidelberg New York, 2007.
  • [21] M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2001.
  • [22] K. Hoffman and R. Kunze, Linear Algebra, Prentice-hall, inc., Englewood Cliffs, New Jersey, 1961.
  • [23] A.W. Joshi, Matrices and Tensor in Physics, New Age International Publishers, 1995.
  • [24] R.A. Horn and Ch.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 2013.
  • [25] W.H. Haemers, “On some problems of Lovász concerning the Shannon capacity of graphs,” IEEE Trans. Inf. Th., vol. 25, pp. 231–232, 1979.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5449b446-b9ff-4d6c-bd6b-264a299437f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.