PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural modeling and optimization of the coverage of the sprayed surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improving application efficiency is crucial for both the economic and environmental aspects of plant protection. Mathematical models can help in understanding the relationships between spray application parameters and efficiency, and reducing the negative impact on the environment. The effect of nozzle type, spray pressure, driving speed and spray angle on spray coverage on an artificial plant was studied. Artificial intelligence techniques were used for modeling and the optimization of application process efficiency. The experiments showed a significant effect of droplet size on the percent area coverage of the sprayed surfaces. A high value of the vertical transverse approach surface coverage results from coarse droplets, high driving speed, and nozzles angled forward. Increasing the vertical transverse leaving surface coverage, as well as the coverage of the sum of all sprayed surfaces, requires fine droplets, low driving speed, and nozzles angled backwards. The maximum coverage of the upper level surface is obtained with coarse droplets, low driving speed, and a spray angle perpendicular to the direction of movement. The choice of appropriate nozzle type and spray pressure is an important aspect of chemical crop protection. Higher upper level surface coverage is obtained when single flat fan nozzles are used, while twin nozzles produce better coverage of vertical surfaces. Adequate neural models and evolutionary algorithms can be used for pesticide application process efficiency optimization.
Rocznik
Strony
601--608
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
Bibliografia
  • [1] EP, European Parliament, November 24, 2009. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for co mmunity action to achieve the sustainable use of pesticides. Available at: http://eurlex.europa.eu/legal-content/EN/TXT/?qid=1480964412858&uri=CELEX:32009L0128 2009, accessed 1 December 2016.
  • [2] A. Özkara, D. Akyıl, and M. Konuk, “Pesticides, Environmental Pollution, and Health,” Environmental Health Risk – Hazardous Factors to Living Species, 2016.
  • [3] P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens, “Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture”, Front Public Health 4,148 (2016).
  • [4] K. Sabanci and K. Aydin, “Smart robotic weed control system for sugar beet”, J. Agr. Sci. Tech. 19, 73‒83 (2017).
  • [5] J.C. Ferguson, R.G. Chechetto, C.C. O’Donnell et al., “Determining the drift potential of Venturi nozzles compared with standard nozzles across three insecticide spray solutions in a wind tunnel”, Pest Manag. Sci. 72, 1460‒1466 (2016).
  • [6] C.E. Atay, and P. Ayebare, “Determination of buffer-zones using agricultural information system”, TEM Journal. 6, 363‒371 (2017).
  • [7] P. Balsari, E. Gil; P. Marucco, J. C. van de Zande, D. Nuyttens, A. Herbst, and M. Gallart, “Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type”, Biosyst. Eng. 154, 3‒13 (2017).
  • [8] E. Brusselman, B. Beck, S. Pollet et al., “Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables”, Pest Manag. Sci. 68, 444‒453 (2012).
  • [9] A. Hanafi, M. Hindy, and S. A. Ghani, “Effect of spray application techniques on spray deposits and residues of bifenthrin in peas under field conditions”, J. Pestic. Sci. 41, 49‒54 (2016).
  • [10] C. Kjaer, M. Bruus, R. Bossi et al., “Pesticide drift deposition in hedgerows from multiple spray swaths”, J. Pestic. Sci. 39, 14‒21 (2014).
  • [11] D. Nuyttens, K. Baetens, M. De Schampheleire, and B. Sonck, “Effect of nozzle type, size and pressure on spray droplet characteristics”, Biosyst. Eng. 97, 333‒345 (2007).
  • [12] J.C. Ferguson, R.G. Chechetto, A.J. Hewitt et al., “Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat Avena sativa L. canopy”, Crop Prot. 81, 14‒19 (2016).
  • [13] V. Visacki, A. Sedlar, E. Gil, R. Bugarin, J. Turan, T. Janić, and P. Burg, “Effects of sprayer boom height and operating pressure on the spray uniformity and distribution model development”, Appl. Eng. Agric. 32, 341‒346 (2016).
  • [14] D. Foque, J.G. Pieters, and D. Nuyttens, “Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants”, Pest Manag. Sci. 70, 427‒439 (2014).
  • [15] M. De Schampheleire, D. Nuyttens, K. Baetens, W. Cornelis, D. Gabriels, and P. Spanoghe, “Effects on pesticide spray drift of the physicochemical properties of the spray liquid”, Precis. Agric. 10, 409‒420 (2009).
  • [16] T. Arvidsson, L. Bergstrom, and J. Kreuger, “Spray drift as influenced by meteorological and technical factors”, Pest Manag. Sci. 67, 586‒598 (2011).
  • [17] R.C. Derksen, H.E. Ozkan, P.A. Paul, and H. Zhu, “Plant canopy characteristics effect on spray deposition”, Asp. Appl. Biol. 122, 227‒235 (2014).
  • [18] W.I.W. Ishak, R.M. Hudzari, and M.M.N Ridzuan, „Development of variable rate sprayer for oil palm plantation”, Bull. Pol. Ac.: Tech. 59, 299‒302 (2011).
  • [19] M. Cunha, C. Carvalho, and A.R.S. Marcal, “Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets”, Biosyst. Eng. 111, 11‒23 (2012).
  • [20] J.C. Ferguson, A.J. Hewitt, and C.C. O’Donnell, “Pressure, droplet size classification, and nozzle arrangement effects on coverage and droplet number density using air-inclusion dual fan nozzles for pesticide applications”, Crop Prot. 89, 231‒238 (2016).
  • [21] M. Sies, F.N. Madzlan, N Asmuin, A. Sadikin, and H Zakaria, “Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J” IOP Conference Series: Materials Science and Engineering, p. 243, 2017.
  • [22] J. Sanchez-Hermosilla, V.J. Rincon, F. Paez, and M. Fernandez, “Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops”, Crop Prot. 31, 119‒124 (2012).
  • [23] J.T. Witton, M.D. Pickering, T. Alvarez, M. Reed, G. Weyman, M.E. Hodson, and R. Ashauer, “Quantifying pesticide deposits and spray patterns at micro‐scales on apple (Malus domesticus) leaves with a view to arthropod exposure”, Pest. Manag. Sci. 74, 2884‒2893 (2018).
  • [24] P. Lofstrom, M. Bruus, H.V. Andersen, C. Kjaer, D. Nuyttens, and P. Astrup, “The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers”, J. Pestic. Sci. 38, 129‒138 (2013).
  • [25] K. Baetens, D. Nuyttens, P. Verboven, M. De Schampheleire, B. Nicolaï, and H. Ramon, „Predicting drift from field spraying by means of a 3D computational fluid dynamics model”, Comput. Electron. Agric. 56, 161‒173 (2007).
  • [26] K. Baetens, Q.T. Ho, D. Nuyttens et al., A validated 2-D diffusion-advection model for prediction of drift from ground boom sprayers, Atmos. Environ. 43, 1674‒1682 (2009).
  • [27] F. Lebeau, A. Verstraete, C. Stainier, and M.F. Destain, “RTDrift: A real time model for estimating spray drift from ground applications”, Comput. Electron. Agric. 77, 161‒174 (2011).
  • [28] M.C. Kennedy, M.C.B. Ellis and P.C.H. Miller “BREAM: A probabilistic Bystander and Resident Exposure Assessment Model of spray drift from an agricultural boom sprayer”, Comput. Electron. Agric. 88, 63‒71 (2012).
  • [29] K. Pentoś and K. Pieczarka, “Applying an artificial neural network approach to the analysis of tractive properties in changing soil conditions”. Soil Tillage Res. 165, 113‒120 (2017).
  • [30] P. Braekman and B. Sonck, “An appropriate technical inspection methodology to tackle the great diversity of spray equipment used in Flemish greenhouses”, Asp. Appl. Biol. 83, 95–98 (2007).
  • [31] P. Braekman and B. Sonck, “A review of the current spray applications techniques in various ornamental plant production systems in Flanders, Belgium”, Asp. Appl. Biol. 84, 303–308 (2008).
  • [32] D. Ghosh, U.P. Singh, K. Ray, A. Das, “Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network”, Span. J. Agric. Res. 14, e1003, 2016.
  • [33] L. Johann, A. G. de Araújo, H.C. Delalibera, and A.R. Hirakawa, “Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener”, Comput. Electron. Agric. 121, 420‒428 (2016).
  • [34] C.T. Kowalski and M. Kamiński, “Rotor fault detector of the converter-fed induction motor based on RBF neural network”, Bull. Pol. Ac.: Tech. 62, 69‒76 (2014).
  • [35] X. Li, F. Chen, D. Sun, and M. Tao, “Predicting menopausal symptoms with artificial neural network”, Expert Syst. Appl. 42, 8698‒8706 (2015).
  • [36] N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim, and C.S. Lee, “Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of alpha and beta phase in titanium alloys”, Comput. Mater. Sci. 107, 175‒183 (2015).
  • [37] S. Tohidi and Y. Sharifi, “Neural networks for inelastic distortional buckling capacity assessment of steel I-beams”, Thin-Walled Struct., 94, 359‒371 (2015).
  • [38] A.J. Malekabadi, M. Sadeghi, and H.Z. Dizaji, “Comparing Quality of a Telescopic Boom Sprayer with Conventional Orchard Sprayers in Iran”, J. Agr. Sci. Tech. 18, 585‒599 (2016).
  • [39] ANSI/ASABE. Spray Nozzle Classification by Droplet Spectra. Standard 572.1 American Society of Agricultural and Biological Engineers, St. Joseph, MI, 2009.
  • [40] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network ANN modeling and its application in pharmaceutical research”, J. Pharm. Biomed. Anal. 22, 717‒727 (2000).
  • [41] J.E. Madden, N. Avdalovic, P.R. Haddad, and J. Havel, “Prediction of retention times for anions in linear gradient elution ion chromatography with hydroxide eluents using artificial neural networks”. J Chromatogr. A 910, 173‒179 (2001).
  • [42] M. Gevrey, L. Dimopoulos, and S. Lek, “Review and comparison of methods to study the contribution of variables in artificial neural network models”, Ecol Modell, 160, 249‒264 (2003).
  • [43] K. Pentoś, “The methods of extracting the contribution of variables in artificial neural network models – Comparison of inherent instability”, Comput. Electron. Agric.127, 141‒146 (2016).
  • [44] R. Barati, “Application of excel solver for parameter estimation of the nonlinear Muskingum models”, Ksce J. of Civ. Eng. 17, 1139‒1148 (2013).
  • [45] R.K. Bhattacharjya, “Solving Groundwater Flow Inverse Problem Using Spreadsheet Solver”, J. Hydrol. Eng. 16, 472‒477 (2011).
  • [46] S.M. Lee and A.A. Asllani, “Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic progra mming”, Omega-Int. J. Manage. Sci. 32, 145‒153 (2004).
  • [47] M.A. Mazurowski and P.M. Szecówka, “Limitations of sensitivity analysis neural networks in cases with dependent inputs”, in IEEE International Conference on Computational Cybernetics pp. 1–5, 2006.
  • [48] P.M. Szecowka, A. Szczurek, and B.W. Licznerski, “On reliability of neural network sensitivity analysis applied for sensor array optimization”, Sens. Actuator B-Chem. 157, 298‒303 (2011).
  • [49] R.E. Wolf, and N.P. Daggupati, “Nozzle type effect on soybean canopy penetration”, Appl. Eng. Agric. 25, 23‒30 (2009).
  • [50] H.Y. Zhao, C. Xie, F.M. Liu, X.K. He, J. Zhang, and J.L. Song, “Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat”, Crop Prot. 60, 78‒82 (2014).
  • [51] E. Gil, P. Balsari, M. Gallart, et al. “Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench”, Crop Prot. 56, 58‒68 (2014).
  • [52] R.H. Elliott and L.W. Mann, “Control of wheat midge, Sitodiplosis mosellana Gehin, at lower chemical rates with small-capacity sprayer nozzles”, Crop Prot. 16, 235‒242 (1997).
  • [53] B. Richardson and M. Newton, “Spray deposition within plant canopies”, N. Z. Plant Prot. 53, 248‒252 (2000).
  • [54] L.E. Bode, “Spray application technology”, in Methods of Applying Herbicides. WSSA Monograph 4 ed., pp. 85‒110 eds. G. McWorter and M.R. Gebhardt, Weed Science Society of America, Champaign Illinois, USA, 1987.
  • [55] H. Zhu, R.C. Derksen, H. Guler, C.R. Krause, and H.E. Özkan, “Foliar deposition and off-target loss with different spray techniques innursery applications”, T ASABE 49, 325–333 (2006).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-544680fa-42e2-4a20-b4e3-7b676861b856
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.