PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Adsorption behavior of poly(ethylene oxide) on kaolinite: Experimental and molecular simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(ethylene oxide) (PEO) adsorption behavior on kaolinite surfaces in an aqueous solution was investigated through experiments, the density functional theory (DFT), and molecular dynamics (MD) simulations. The experimental results showed that as the PEO concentration increased, the adsorption capacity first increased then slightly decreased and the turbidity change was opposite. The adsorption isotherm on the kaolinite surface was more suitable for the Langmuir model and valid for single-layer adsorption. The results of simulations showed that the PEO chains extended along the two basal surfaces of kaolinite or were partly adsorbed, forming loops and tails that caused most of the particles to flocculate, contributing to the turbidity lowering. When the number of PEO chains was excessive, their self- and inter-aggregation occurred with some PEO far from the surface, and the turbidity increased. On the kaolinite (001) surface, the hydrogen bonds between the PEO ether O and the hydroxyl groups constituted the main interaction mechanism. However, the hydrophobic force of the (CH2–CH2)–moiety of PEO might have dominated its adsorption on the (001̅) surface. The hydrogen bonds were stronger than the hydrophobic interactions.
Rocznik
Strony
art. no. 185900
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
autor
  • School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
  • School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
autor
  • School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
autor
  • Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
autor
  • School of Chemical and Environmental Engineering, China University of Mining &Technology Beijing, Beijing 100083, China
Bibliografia
  • BEHL. S., MOUDGIL, B.M., 1993, Mechanisms of Polyethylene Oxide Interaction with apatite, J. Colloid Interface Sci. 161, 443-449.
  • BISH, D., 1993, Rietveld refinement of the kaolinite structure at 1.5 K, Clays and Clay Minerals. 41(6) 738-744.
  • CHEN J., MIN F., LIU L., LIU C., 2019, Mechanism research on surface hydration of Kaolinite, insights from DFT and MD simulations, Applied Surface Science 476(15), 6-15.
  • DELLEY B., 1995, DMol, a standard tool for density functional calculations: review and advances, Theoretical and computational chemistry. 2, 221-254.
  • DESIRAJU G.R., STEINER T., 2001, The weak hydrogen bond. In Structural Chemistry and Biology: Oxford University Press.
  • KLAMT A., SCHÜÜRMANN G., 1993, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc. Perkin Trans. 2(5), 799-805.
  • LIU D., PENG Y., 2014, Reducing the entrainment of clay minerals in flotation using tap and saline water, Powder Technology. 253, 216-222.
  • LUO J., LIU M., XING Y., GUI X., LI J., 2022, Investigating agglomeration of kaolinite particles in the presence of dodecylamine by force testing and molecular dynamics simulation, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 645, 128930.
  • MATHUR, S. MOUDGIL B.M., 1997, Adsorption mechanisms of polyethylene oxide on oxide surfaces, Journal of Colloid and Interface Science. 196, 92-98.
  • MPFOU P., ADDAI-MENSAH J., RALSTON J., 2003, Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions, Colloid Interface Sci. 71, 247-268.
  • PERDEW J.P., BURKE K., ERNZERHOF M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865.
  • REN B., LV K., MIN F., CHEN J., LIU C., 2021, A new insight into the adsorption behavior of NPAM on kaolinite/water interface: Experimental and theoretical approach, Fuel. 303(9), 121299.
  • STEPANOV I.A., 2005, The heats of chemical reactions: the Van’t-hoff equation and calorimetry, J. Zeitschrift für Physikalische Chemie. 219(8), 1089-1097.
  • SWENSON J., SMALLEY M.V., HATHARASINGHE H.L.M., 1998, Mechanism and strength of polymer bridging flocculation, Physical Review Letters. 81(26), 5840.
  • TKATCHENKO A., SCHEFFLER M., 2009, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102(7), 073005.
  • UNDERWOOD T., ERASTOVA V., GREENWELL H.C., 2016, Wetting effects and molecular adsorption at hydrated kaolinite clay mineral surface, The Journal of Physical Chemistry C. 120(21), 11433-11439.
  • WANG Y., CAO Y., HU S., 2022, Effects of solution pH and polyethylene oxide concentrations on molybdenite–molybdenite, molybdenite–Kaolinite, and molybdenite–quartz interaction forces: AFM colloidal probe study, Separation and Purification Technology. 380, 119926.
  • XU Z., LIU J., CHOUNG J. W., ZHOU Z., 2003, Electrokinetic study of clay interactions with coal in flotation, International Journal of Mineral Processing. 68.1, 183-196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54463a5f-6bf9-4c5a-9e92-68d7f2a589a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.