PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of the Aerodynamic Characteristics of H-Darrieus Vertical-axis Wind Turbines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a study of the aerodynamic characteristics of a small H-Darrieus wind turbine to optimise its design. The article proposes correlations between the blades' geometric and aerodynamic characteristics, optimising the blades' profile and their dimensions for various values of wind speed, aerodynamic forces, and rotational moments. The data obtained can be helpful in the design and study of low-power wind turbines operating at low wind speeds with variable directions.
Rocznik
Tom
Strony
25--36
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
autor
  • Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, Ukraine
  • Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, Ukraine
Bibliografia
  • Ahmadi-Baloutaki, M, Carriveau, R, Ting, DS-K. (2014). Straight-bladed vertical axis wind turbine rotor design guide based on aerodynamic performance and loading analysis. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 228(7), 742-759. https://doi.org/10.1177/0957650914538631
  • ANSYS FLUENT Theory Guide. Release 14.0, November 2011.
  • Ariefianto, Rizki, Mendung, Ariefianto, Rizki, Mendung, Hasanah, Rini, Nur, Hasanah, Rini, Nur, Wijono, W. (2023). Optimasi Turbin Arus Laut Tipe V-Shaped Blade dengan Mempertimbangkan Blade Aspect Ratio dan Solidity. Jurnal Teknologi, 15(1), 1-12. https://doi.org/10.24853/jurtek.15.1.1-12
  • Arumugam, P., Ramalingam, V., Bhaganagar, K. (2021). A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustain. Energy Technol. Assessments., 44, Article 101019. https://doi.org/10.1016/j.seta.2021.101019
  • Batista, N., Melicio, R., Mendes, V. (2018). Darrieus-type vertical axis rotary-wings with a new design approach grounded in double-multiple streamtube performance prediction model. AIMS Energy, 6(5), 673-694. https://doi.org/10.3934/energy.2018.5.673
  • Blocken, Bert, Stathopoulos, Ted, Carmeliet, J. (2007). CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 41(2), 238-252. © Elsevier 2007.
  • Bourhis, M., Pereira, M., Ravelet, F. (2023). Experimental investigation of the effect of blade solidity on micro-scale and low tip-speed ratio wind turbines. Experimental Thermal and Fluid Science, 140, 110745. https://doi.org/10.1016/j.expthermflusci.2022.110745
  • Cho, S-Y, Choi, S-K, Kim, J-G, Cho, C-H. (2018). An experimental study of the optimal design parameters of a wind power tower used to improve the performance of vertical axis wind turbines. Advances in Mechanical Engineering, 10(9). https://doi.org/10.1177/1687814018799543
  • Dąbek, L., Kapjor, A., Orman, Ł.J. (2019). Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces. Mechanics & Industry, 20, 701. https://doi.org/10.1051/meca/2019068
  • Ishugah, T.F., Li, Y., Wang, R.Z., Kiplagat, J.K. (2014). Advances in wind energy resource exploitation in urban environment : A review Renew. Sustain. Energy Rev., 37, 613-626. https://doi.org/10.1016/j.rser.2014.05.053
  • Jorg, Franke, Antti, Hellsten, Heinke, Schlunzen, Bertrand, Carissimo, (2007). Best practice guideline for the cfd simulation of flows in the urban environment cost action 732 quality assurance and improvement of microscale meteorological models. © COST Office. Available online: www.cost.esf.org.
  • Karthikeyan, N., Murugavel, K.K., Kumar, S.A., Rajakumar, S. (2015). Review of aerodynamic developments on small horizontal axis wind turbine blade. Renew. Sustain. Energy Rev., 42, 801-822, https://doi.org/10.1016/j.rser.2014.10.086
  • Mahmuddin, Faisal, (2017). Rotor Blade Performance Analysis with Blade Element Momentum Theory. Energy Procedia, 105, 1123-1129. https://doi.org/10.1016/j.egypro.2017.03.477
  • Madi, Madi., Rahmawati, S., Mukhtasor., Satrio, D., Yasim, A. (2021). Variation Number of Blades for Performance Enhancement for Vertical Axis Current Turbine in Low Water Velocity in Indonesia. [In:] Proceedings of the 7th International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management – ISOCEEN, ISBN 978-989-758-516-6, 47-53. https://doi.org/10.5220/0010047900470053
  • Mohan, Kumar, P., Sivalingam, K., Lim, T.-C., Ramakrishna, S., Wei, H. (2019). Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines. Clean Technol., 1, 205-223. https://doi.org/10.3390/cleantechnol1010014
  • Noronha, N.P., Krishna, M. (2021). Aerodynamic performance comparison of airfoils suggested for small horizontal axis wind turbines. Mater. Today Proc., 46, 2450-2455. https://doi.org/10.1016/j.matpr.2021.01.359
  • Osei, Emmanuel, Yeboah, Opoku, Richard, Sunnu, Albert, K., Adaramola, Muyiwa, S., Kyeremeh, Ebenezer, Adu. (2022). Aerodynamic performance characteristics of EYO-Series low Reynolds number airfoils for small wind turbine applications. Alexandria Engineering Journal, 61(12), 12301-12310. https://doi.org/10.1016/j.aej.2022.05.049
  • Pagnini, L.C., Burlando, M., Repetto, M.P. (2015). Experimental power curve of small-size wind turbines in turbulent urban environment. Appl. Energy, 154, 112-121. https://doi.org/10.1016/j.apenergy.2015.04.117.
  • Papi, F., Nocentini, A., Ferrara, G., Bianchini, A. (2021). On the use of modern engineering codes for designing a small wind turbine: an annotated case study. Energies, 14, 1-23. https://doi.org/10.3390/en14041013
  • Pavlenko, A.M. (2018). Dispersed phase breakup in boiling of emulsion. Heat Transfer Research, 49(7), 633-641. https://doi.org/10.1615/HeatTransRes.2018020630.
  • Pavlenko, A.M. (2019). Energy conversion in heat and mass transfer processes in boiling emulsions. Thermal Science and Engineering Progress, 15, 1-8. https://doi.org/10.1016/j.tsep.2019.100439
  • Pavlenko, A.M., Koshlak, H. (2021). Application of thermal and cavitation effects for heat and mass transfer process intensification in multicomponent liquid media. Energies, 14(23), 7996. https://doi.org/10.3390/en14237996
  • Pavlenko, A.M., Koshlak, H., Usenko, B. (2014a). The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry, 6(3), 55-59.
  • Pavlenko, A., Koshlak, H., Usenko, B. (2014b). Heat and mass transfer in fluidised layer. Metallurgical and Mining Industry, 6(6), 96-100.
  • Piotrowski, J.Zb., Orman, Ł.J., Lucas, X., Zender-Świercz, E., Telejko, M., Koruba, D. (2014). Tests of thermal resistance of simulated walls with the reflective insulation. Proc. of Int. Conf. "Experimental Fluid Mechanics 2013", EPJ Web of Conferences, 67, 02095. https://doi.org/10.1051/epjconf/20146702095
  • Richards, P., Hoxey, R., (1993). Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46-47, 145-153.
  • Sadorsky, P. (2021). Wind energy for sustainable development : Driving factors and future outlook. J. Clean. Prod., 289, Article 125779. https://doi.org/10.1016/j.jclepro.2020.125779
  • Sakran, H.K., Abdul Aziz, M.S., Abdullah, M.Z. et al. Effects of Blade Number on the Centrifugal Pump Performance: A Review. Arab J Sci Eng 47, 7945–7961 (2022). https://doi.org/10.1007/s13369-021-06545-z
  • Salih, N., Akour, Mohammed, Al-Heymari, Talha, Ahmed, Kamel, Ali, Khalil. (2018). Experimental and theoretical investigation of micro wind turbine for low wind speed regions. Renewable Energy, 116, Part A, 215-223. https://doi.org/10.1016/j.renene.2017.09.076
  • Singh, R.K., Ahmed, M.R. (2013). Blade design and performance testing of a small wind turbine rotor for low wind speed applications. Renewable Energy, 50, 812-819. https://doi.org/10.1016/j.renene.2012.08.021
  • Su, Jie, Chen, Yaoran, Han, Zhaolong, Zhou, Dai, Bao, Yan, Zhao, Yongsheng, (2020). Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines. Applied Energy, 260, 114326, https://doi.org/10.1016/j.apenergy.2019.114326
  • Tampieri, F., Mammarella, I., Maurizi, A. (2003). Turbulence in Complex Terrain. Boundary-Layer Meteorology, 109, 85-97. https://doi.org/10.1023/A:1025487702985
  • Wen, Q., He, X., Lu, Z., Streiter, R., Otto, T. (2021). A comprehensive review of miniatured wind energy harvesters. Nano Mater. Sci., 3, 170-185, https://doi.org/10.1016/j.nanoms.2021.04.001
  • Wieringa, J., Davenport, A.G., Grimond, B., Oke, Tim, R. (2001). New revision of Davenport roughness classification. 3rd European & African Conference on Wind Engineering. Eindhoven, Netherlands. Available online: http://www.kcl.ac.uk/ip/suegrimmond/ published papers/DavenportRoughness2.pdf
  • Yang, Yi, Gu, Ming, Jin, Xinyang. (2009). New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layer in sst k-ω model. The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12 2009, Taipei, Taiwan.
  • Yossri, W., Ayed, S. Ben, Abdelke, A. (2021). Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines : Computational fluid dynamics investigation. Energy, 229, 120739. https://doi.org/10.1016/j.energy.2021.120739
  • Zhang, Hongfu, Wen, Jiahao, Zhan, Jian, Xin, Dabo, (2022). Effects of blade number on the aerodynamic performance and wake characteristics of a small horizontal-axis wind turbine. Energy Conversion and Management, 273, 116410. https://doi.org/10.1016/j.enconman.2022.116410
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-543f960e-ac71-4d79-a2a3-e0d936a7d40d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.