PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of acoustic-plastic constitutive modeling based on Johnson-Cook model and numerical simulation application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a modified acoustic-plastic Johnson–Cook model for Ti–45Nb alloy was established, which can be used to reveal the metallic deformation behavior under ultrasonic vibration-assisted (TUV) forming. First, the experiments of traditional compression and TUV compression were carried out, the influence of vibration amplitude on yield strength, strain hardening coefficient and index, and strain rate hardening coefficient. The yield strength reduction is caused by the acoustic softening effect. The yield strength and strain hardening coefficient present a negative correlation with amplitude increase, the strain hardening index and strain rate hardening coefficient present a positive correlation with amplitude increase. Further, the accuracy of the developed constitutive model was quantitatively identified, the relative coefficient is as high as 0.954, the mean absolute percentage error less than 5.42%. On this basis, a user-defined subroutine was developed to implement the numerical simulation of the TUV forming processes using the finite element method, the results of numerical simulation and experiment are in good agreement, and prediction accuracy is as high as 95.25%. Therefore, the developed constitutive model can be well revealed the material deformation behavior and provides an application guide.
Rocznik
Strony
605--620
Opis fizyczny
Bibliogr. 18 poz., fot., rys., wykr.
Twórcy
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
  • [1] Hung J-C, Tsai Y-C. Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass. Mater Sci Eng, A. 2013;580:125–32. https:// doi. org/ 10. 1016/j. msea. 2013. 04. 074.
  • [2] Chen F, Wang D, Wu S. Influence of ultrasonic vibration-assisted cutting on ploughing effect in cutting Ti6Al4V. Arch Civ Mech Eng. 2021;21:2. https:// doi. org/ 10. 1007/ s43452- 021- 00196-5.
  • [3] Djavanroodi F, Ahmadian H, Naseri R, Koohkan K, Ebrahimi M. Experimental investigation of ultrasonic assisted equal channel angular pressing process. Archives of Civil and Mechanical Engineering. 2016;16(3):249–55. https:// doi. org/ 10. 1016/j. acme. 2015. 10. 001.
  • [4] Liu Y, Han Q, Hua L, Xu C. Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip. Ultrasonics. 2013;53:803–7. https:// doi. org/ 10. 1016/j. ultras. 2012. 11. 010.
  • [5] Yao Z, Kim G-Y, Faidley L, Zou Q, Mei D, Chen Z. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J Mater Process Technol. 2012;212:640–6. https:// doi. org/ 10. 1016/j. jmatp rotec. 2011. 10. 017.
  • [6] Zhou H, Cui H, Qin QH. Influence of ultrasonic vibration on the plasticity of metals during compression process. J Mater Process Technol. 2018;251:146–59. https:// doi. org/ 10. 1016/j. jmatp rotec. 2017. 08. 021.
  • [7] Prabhakar A, Verma GC, Krishnasamy H, Pandey PM, Lee MG, Suwas S. Dislocation density based constitutive model for ultrasonic assisted deformation. Mech Res Commun. 2017;85:76–80. https:// doi. org/ 10. 1016/j. mechr escom. 2017. 08. 003.
  • [8] Yao Z, Mei D, Chen Z. Modeling of metallic surface topography modification by high-frequency vibration. J Sound Vib. 2016;363:258–71. https:// doi. org/ 10. 1016/j. jsv. 2015. 10. 037.
  • [9] Sedaghat H, Xu W, Zhang L. Ultrasonic vibration-assisted metal forming: Constitutive modelling of acoustoplasticity and applications. J Mater Process Technol. 2019;265:122–9. https:// doi. org/ 10. 1016/j. jmatp rotec. 2018. 10. 012.
  • [10] Meng B, Cao BN, Wan M, Wang CJ, Shan DB. Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet. Int J Mech Sci. 2019;157–158:609–18. https:// doi. org/ 10. 1016/j. ijmec sci. 2019. 05. 009.
  • [11] Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. 1983; p. 541–47.
  • [12] Gao CY, Zhang LC, Yan HX. A new constitutive model for HCP metals. Mater Sci Eng, A. 2011;528:4445–52. https:// doi. org/ 10. 1016/j. msea. 2011. 02. 053.
  • [13] Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61:1816–25.
  • [14] Wang X, Qi Z, Chen W. Study on constitutive behavior of Ti–45Nb alloy under transversal ultrasonic vibration-assisted compression. Arch Civ Mech Eng. 2021. https:// doi. org/ 10. 1007/ s43452- 021- 00186-7.
  • [15] Xie Z, Guan Y, Lin J, Zhai J, Zhu L. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model. Ultrasonics. 2019;96:1–9. https:// doi. org/ 10. 1016/j. ultras. 2019. 03. 017.
  • [16] Zhou H, Cui H, Qin Q-H, Wang H, Shen Y. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing. Mater Sci Eng, A. 2017;682:376–88. https:// doi. org/ 10. 1016/j. msea. 2016. 11. 021.
  • [17] Hu J, Shimizu T, Yang M. Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact. Ultrason Sonochem. 2018;48:240–8. https:// doi. org/ 10. 1016/j. ultso nch. 2018. 05. 039.
  • [18] Delshadmanesh M, Khatibi G, Ghomsheh MZ, Lederer M, Zehetbauer M, Danninger H. Influence of microstructure on fatigue of biocompatible β-phase Ti–45Nb. Mater Sci Eng, A. 2017;706:83–94. https:// doi. org/ 10. 1016/j. msea. 2017. 08. 098.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-543d643f-7e98-4b61-8bf1-1fd012978f7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.