PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical design of selected geotechnical solutions which protect civil structures from the effects of underground mining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the authors' computational methods based on Knothe's theory. The methods enable the estimation of the reduction coefficient for effects which originate from mining operations performed via the application of a longitudinal structure which is sunk in to the ground. It could be, for example, a partition, which as a structural gap fulfils the function of an expansion grout, or via breaking the subsoil continuity (e.g. because of creating a peat-filled ditch or using a natural gap). Demonstrative calculations have been carried out in a few cases, i.a. to protect a structure situated in the vicinity of a planned tunnel. Additionally, some examples of the discontinuity zone which impact the obtained deformation values have been presented. The calculation method has been tested in case studies. The results of the calculations clearly show the positive influence of the applied geotechnical solutions on the minimisation of mining damage.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059, Cracow, Poland
autor
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059, Cracow, Poland
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059, Cracow, Poland
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059, Cracow, Poland
Bibliografia
  • 1. Budryk, W. (1954). Wpływ niektórych konstrukcji budowlanych na przemieszczenia i odkształcenia powierzchni [The influence of some building structures on surface displacement and deformation]. Archiwum Gornictwa i Hutnictwa, 2(4), 423-445.
  • 2. Dai, H., Lian, X., Liu, J., Liu, Y., Zhou, Y., Deng, W., et al. (2010). Model study of deformation induced by fully mechanized caving below a thick loess layer. International Journal of Rock Mechanics and Mining Sciences, 47(6), 1027-1033. https://doi.org/10.1016/j.ijrmms.2010.06.005.
  • 3. Dai, H., Yang, G., & Zhao, Q. (1997). Building artificial weak plane protection method and its application research. Mining Survey, 5(2), 14-17. (in Chinese) http://www.doc88.com/p-5045696832581.html.
  • 4. Deck, O., & Singh, A. (2012). Analytical model for the prediction of building deflections induced by ground movements. International Journal for Numerical and Analytical Methods in Geomechanics, 36(1), 62-84. https://doi.org/10.1002/nag.993.
  • 5. Florkowska, L. (2012). Building protection against the backdrop of current situation and growth perspectives for the Polish mining industry. Archives of Mining Sciences, 57(3), 645-655. https://doi.org/10.2478/v10267-012-0041-2.
  • 6. Gayarre, L., Álvarez-Fernández, M. I., González-Nicieza, C., Álvarez-Vigil, A. E., & Herrera Garcíad, G. (2010). Forensic analysis of buildings affected by mining subsidence. Engineering Failure Analysis, 17(1), 270-285. https://doi.org/10.1016/j.engfailanal.2009.06.008.
  • 7. Grün, E. (1995). Analyse und Prognose von Unstetigkeiten als Folge bergbaubedingter Bodenbewegungen im Linksniederrheinischen Steinkohlengebiet [Analysis and prognosis of discontinuities as a result of mining-related ground movements in the Lower Rhine coal area](PhD thesis). Aachen, Germany: Rheinisch-Westfalische Technische Hochschule (RWTH).
  • 8. Grygierek, M., & Kalisz, P. (2018). Influence of mining operations on road pavement and sewer system - selected case studies. Journal of Sustainable Mining, 17(2), 56-67. https://doi.org/10.1016/j.jsm.2018.04.001.
  • 9. Guo, G., Zhu, X., Zha, J., & Wang, Q. (2014). Subsidence prediction method based on equivalent mining height theory for solid backfilling mining. Transactions of Nonferrous Metals Society of China, 24(10), 3302-3308. https://doi.org/10.1016/S1003-6326(14)63470-1.
  • 10. Hegemann, M. (2018). Scientific importance of the academic achievements of professor Knothe for ground movement calculation in Germany. Prace Instytutu Mechaniki Górotworu PAN, 20(1), 33-44. http://www.img-pan.krakow.pl/index.php/en/component/docman/doc_download/647-201801-04-hegemann.html.
  • 11. Hejmanowski, R., & Malinowska, A. A. (2016). Significance of the uncertainty level for the modelling of ground deformation ranges. International Journal of Rock Mechanics and Mining Sciences, 83, 140-148. https://doi.org/10.1016/j.ijrmms.2015.12.019.
  • 12. Hörich, S., & Sroka, A. (2004). Vorausberechnung der Bodenbewegungselemente über Tunnelbauten im Lockergebige [Prediction of the ground movement elements over tunnels in the Lockered]. Proceedings of XII international congress of international society for mine surveying, Fuxin-Beijing, China, 20-26.09.2004 (pp. 528-531). (Beijing).
  • 13. Huang, L., Zhang, J., Xu, J., & Dai, H. (1996). Research on indirect protection technology of foundation rock in a mining area. Coal Science and Technology, 2(2), 2-7. (in Chinese). Retrieved July 14, 2018, from http://www.doc88.com/p-1167434341355.html.
  • 14. Ilin, I., Kalinina, O., Iliashenko, O., & Levina, A. (2016). Sustainable urban development as a driver of safety system development of the urban underground. Procedia Engineering, 165, 1673-1682. https://doi.org/10.1016/j.proeng.2016.11.909.
  • 15. Jakubowski, J., Stypulkowski, J. B., & Bernardeau, F. G. (2017). Multivariate linear regression and cart regression analysis of TBM performance at Abu Hamour phase-I tunnel. Archives of Mining Sciences, 62(4), 825-841. https://doi.org/10.1515/amsc-2017-0057.
  • 16. Karmis, M., Agioutantis, Z., & Jarosz, A. (1990). Recent developments in the application of the influence function method for ground movement predictions in the U.S. Mining Science and Technology, 10(3), 233-245. https://doi.org/10.1016/0167-9031(90)90439-Y.
  • 17. Knothe, S. (1954). Przybliżona metoda wyznaczania wielkości odkształceń powierzchni poza ścianką zaporową [An approximate method for determining the magnitude of surface deformation outside the retaining wall]. Archiwum Gornictwa i Hutnictwa, 2(4), 473-487.
  • 18. Knothe, S. (1984). Prognozowanie wpływów eksploatacji górniczej [Forecasting the impact of mining operations (1st ed.). Katowice: Wydawnictwo Śląsk.
  • 19. Kowalski, A., & Jędrzejec, E. (2015). Influence of subsidence fluctuation on the determination of mining area curvatures. Archives of Mining Sciences, 60(2), 487-505. https://doi.org/10.1515/amsc-2015-0032.
  • 20. Kwiatek, J. (2010). Fault diagnosis of building structures in mining areas. Archives of Mining Sciences, 55(2), 313-330.
  • 21. Li, X., & Yeh, A. G.-O. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2), 131-152. https://doi.org/10.1080/136588100240886.
  • 22. Luo, Y., & Peng, S. S. (1991). Protecting a subsidence affected house: A case study. Proceedings of the VIII congress international society for mine surveying, Kentucky, USA (pp. 297-300). (Kentucky).
  • 23. Malinowska, A. A. (2017). Fuzzy inference-based approach to the mining-induced pipeline failure estimation. Natural Hazards, 85(1), 621-636. https://doi.org/10.1007/s11069-016-2594-4.
  • 24. Migliazzaa, M., Chiorbolib, M., & Giania, G. P. (2009). Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground. Computers and Geotechnics, 36(1-2), 113-124. https://doi.org/10.1016/j.compgeo.2008.03.005.
  • 25. Misa, R. (2016). Metody ograniczenia wpływu eksploatacji podziemnej na obiekty budowlane poprzez zastosowanie rozwiązań geotechnicznych [Geotechnical solutions as the methods for reducing the impact of underground mining exploitation on construction]. Prace Instytutu Mechaniki Górotworu PAN. Kraków: Instytut Mechaniki Górotworu PAN.
  • 26. Peck, R. B. (1969). Deep excavations and tunneling in soft ground. 7th international conference on soil mechanics and foundation engineering: Vol. 7, (pp. 225-290). (3).
  • 27. Peng, S. S. (1992). Surface subsidence engineering. Littleton, CO: Society for Mining, Metallurgy, and Exploration.
  • 28. Preusse, A., Müller, D., & Beckers, D. (2018). Challenges in German subsidence research - retrospectives and perspectives. Prace Instytutu Mechaniki Górotworu PAN, 20(1), 25-32. Retrieved July 14, 2018, from http://www.img-pan.krakow.pl/index.php/en/component/docman/doc_download/648-201801-04-preusse.html.
  • 29. Rusek, J. (2017). Application of support vector machine in the analysis of the technical state of development in the LGOM mining area. Eksploatacja i Niezawodność - Maintenance and Reliability, 19(1), 54-61. https://doi.org/10.17531/ein.2017.1.8.
  • 30. Rusek, J., & Firek, K. (2016). Assessment of technical condition of prefabricated largeblock building structures located in mining area using the naive bayes classifier. 16th international multidisciplinary scientific GeoConference SGEM 2016, SGEM2016 conference proceedings: Vol. 2, (pp. 109-116). . https://doi.org/10.5593/SGEM2016/ B52/S20.015 Book 5.
  • 31. Schmidt, B. (1974). Prediction of settlements due to tunnelling in soil: Three case histories. In: Proc. 2nd rapid excavation tunnelling conference, San Francisco, CA (pp. 1179-1199). (San Francisco).
  • 32. Sroka, A. (2008). Designing coal extraction where the surface is threatened by discontinuous linear deformations. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 24(2/3), 445-455.
  • 33. Sroka, A., Knothe, S., Tajduś, K., & Misa, R. (2015). Underground exploitations inside safety pillar shafts when considering the effective use of a coal deposit. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 31(3), 93-110. https://doi. org/10.1515/gospo-2015-0027.
  • 34. Sroka, A., Tajduś, K., Misa, R., Hejmanowski, R., & Florkowska, L. (2012). Wykorzystanie metod geotechnicznych w celu ograniczenia wpływów eksploatacji podziemnej na obiekty budowlane [Use of geotechnical methods to reduce the impact of underground mining on buildings]. Research Report No. N N524 466636Cracow, Poland: Laboratory of Rock Deformation, Strata Mechanics Research Institute of the Polish Academy of Sciences.
  • 35. Strokova, L. A. (2009). Numerical model of surface subsidence during subway tunnelling. Soil Mechanics and Foundation Engineering, 46(3), 117-119. https://doi.org/10.1007/ s11204-009-9050-3.
  • 36. Tyrała, A. (1979). Wpływ uskoków tektonicznych na zaburzenia obniżeń powierzchni wywołanych przez eksploatację górniczą [The influence of tectonic faults on disturbances of surface subsidence caused by mining exploitation] (PhD thesis)Katowice, Poland: Główny Instytut Górnictwa.
  • 37. Yigitcanlar, T., & Teriman, S. (2015). Rethinking sustainable urban development: Towards an integrated planning and development process. International Journal of Environmental Science and Technology, 12(1), 341-352. https://doi.org/10.1007/s13762-013-0491-x.
  • 38. Zhang, P., Peterson, S., Neilans, D., Wade, S., McGrady, R., & Pugh, J. (2016). Geotechnical risk management to prevent coal outburst in room-and-pillar mining. International Journal of Mining Science and Technology, 26(1), 9-18. https://doi.org/10.1016/j.ijmst.2015.11.003.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-543c8b5e-fc71-4612-9548-85b14e7b7cb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.