PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental and numerical analysis of aluminum alloy AW5005 behavior subjected to tension and perforation under dynamic loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes mechanical behavior of aluminum alloy AW5005 (EN AW5005) under impact loading. The work is focused on tensile tests and the process of perforation of aluminum alloy AW5005 sheets. Experimental, analytical and numerical investigations are carried out to analyse in details the perforation process. Based on these approaches, ballistic properties of the structure impacted by a conical nose shape projectile are studied. Different failure criteria are discussed, coupling numerical and experimental analyses for a wide range of strain rates. Optimization method functions are used to identify the parameters of the failure criteria. Finally, good correlation is obtained between the numerical and experimental results for both tension and perforation tests.
Rocznik
Strony
1219--1233
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland, and Universiapolis, Ecole Polytechnique d’Agadir Bab Al Madina, Qr Tilila, Agadir, Morocco
autor
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
autor
  • Laboratory of Mechanics, Biomechanics, Polymers and Structures (LaBPS), National Engineering School of Metz (ENIM), Metz, France
autor
  • Universiapolis, Ecole Polytechnique d’Agadir Bab Al Madina, Qr Tilila, Agadir, Morocco, and The International University of Logistics and Transport in Wrocław, Poland
Bibliografia
  • 1. ABAQUS, Abaqus/Explicit User’s Manuals, version 6.11, 2011
  • 2. Ambati M., De Lorenzis L., 2016, Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements, Computer Methods in Applied Mechanics and Engineering, DOI: 10.1016/j.cma.2016.02.017
  • 3. Amiri F., Millan D., Shen Y., Rabczuk T., Arroyo M. , 2014, Phase-field modeling of fracture in linear thin shells, Theoretical and Applied Fracture Mechanics, 69, 102-109
  • 4. Atkins A.G., Liu J.H., 1998, Necking and radial cracking around perforations in thin sheets at normal incidence, International Journal of Impact Engineering, 21, 521-539
  • 5. Bao Y., Wierzbicki T., 2004, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, 46, 81-98
  • 6. Børvik T., Hopperstad O.S., Langseth M., Malo K.A., 2003, Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates, International Journal of Impact Engineering, 28, 413-464
  • 7. Børvik T., Dey S., Clausen A.H., 2009, Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles, International Journal of Impact Engineering, 36, 948-964
  • 8. Elnasri I., Zhao H., 2016, Impact perforation of sandwich panels with aluminum foam core: a numerical and analytical study, International Journal of Impact Engineering, 96, 50-60
  • 9. Erice B., Perez-Martın M.J., Galvez F. , 2014, An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy, International Journal of Impact Engineering, 69, 11-24
  • 10. Hancock J.W., Mackenzie A.C., 1976, On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states, Journal of the Mechanics and Physics of Solids, 24, 147-160
  • 11. Jankowiak T., Rusinek A., Kpenyigba K.M., Pesci R., 2014, Ballistic behavior of steel sheet subjected to impact and perforation, Steel and Composite Structures, 16, 595-609
  • 12. Jankowiak T., Rusinek A., Wood P., 2013, A numerical analysis of the dynamic behavior of sheet steel perforated by a conical projectile under ballistic conditions, Finite Elements in Analysis and Design, 65, 39-49
  • 13. Johnson G.R., Cook W.H., 1983, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, 21, 541-547
  • 14. Johnson G.R., Cook W.H., 1985, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, 21, 1, 31-48
  • 15. Johnson G.R., Holmquist T.J., 1989, Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures. Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11463-MS
  • 16. Kpenyigba K.M., Jankowiak T., Rusinek A., Pesci R., 2013, Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation, Thin-Walled Structures, 65, 93-104
  • 17. Kulekci M.K., 2014, Effect of the process parameters on tensile shear strength of friction stir spot welded aluminum alloy (EN AW5005), Archives of Metallurgy and Materials, 59, 221-224
  • 18. Landkof, B., Goldsmith, W., 1985, Petalling of thin, metallic plates during penetration by cylindro-conical projectiles, International Journal of Solids and Structures, 21, 245-266
  • 19. Liu J., Bai Y., Xu C., 2014, Evaluation of ductile fracture models in finite element simulation of metal cutting processes, Journal of Manufacturing Science and Engineering, 136, 011010 2
  • 0. Quinney H., Taylor G.I., 1937, The emission of the latent energy due to previous cold working when a metal is heated, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 157-181
  • 21. Recht R.F., Ipson T.W., 1963, Ballistic perforation dynamics, Journal of Applied Mechanics, 30, 384-390
  • 22. Rusinek A., Klepaczko J.R., 2001, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress, International Journal of Plasticity, 17, 87-115
  • 23. Rusinek A., Rodrıguez-Martınez J.A., 2009, Thermo-viscoplastic constitutive relation for aluminum alloys, modeling of negative strain rate sensitivity and viscous drag effects, Materials and Design, 30, 4377-4390
  • 24. Rusinek A., Rodrıguez-Martınez J.A., Arias A., Klepaczko J.R., López-Puente J., 2008, Influence of conical projectile diameter on perpendicular impact of thin steel plate, Engineering Fracture Mechanics, 75, 2946-2967
  • 25. Verleysen P., Peirs J., Van Slycken J., Faes K., Duchene L., 2011, Effect of strain rate on the forming behaviour of sheet metals, Journal of Materials Processing Technology, 211, 1457-1464
  • 26. Zhong W.Z., Rusinek A., Jankowiak T., Abed F., Bernier R., Sutter G., 2015, Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system, Tribology International, 90, 1-14
  • 27. Xue L., Mock W., Belytschko T., 2010, Penetration of DH-36 steel plates with and without polyurea coating, Mechanics of Materials, 42, 981-1003
  • 28. Zhong W.Z., Mbarek I.A., Rusinek A., Bernier R., Jankowiak T., Sutter G., 2016, Development of an experimental set-up for dynamic force measurements during impact and perforation, coupling to numerical simulations, International Journal of Impact Engineering, 91, 102-115
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54344df2-4fd2-4ad2-8923-301924eadb06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.