PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manganese pebbles from Hochschartehöhlesystem (the Hoher Göll Massif, Austria) : insight into potential genesis and provenance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy, black manganese pebbles have been found in the clastic sediments of the Hochschartehöhlensystem (the Northern Calcareous Alps). Six selected pebbles were subjected to X-ray diffraction, optical microscopy and optical and electron microscopy analysis. The results reveal that the main component of the pebbles is manganese silicate, braunite, Mn2+Mn3+6(SiO4)O8. Braunite is a mineral formed at elevated temperatures, mainly through hydrothermal, metamorphic or diagenetic processes. This means that the manganese pebbles were formed outside the caves. However, manganese rock was not found in situ on the surface of the Hoher Göll Massif. This probably indicates that their origin is from eroded parts of Mesozoic rocks. The first studies of pebbles and their mineralogy, by analogy with contemporary marine sediments, indicate that their genesis is related to spreading zones and accompanies hydrothermal vents. The analysed material highlights two important issues: (1) the manganese pebbles are significant arguments for the occurrence of hydrothermal vents in the Northern Calcareous Alps; and (2) the importance of cave sediments studies, which provide relevant evidence for palaeogeographic reconstruction.
Rocznik
Strony
211--223
Opis fizyczny
Bibliogr. 61 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań
  • Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań
  • Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań
Bibliografia
  • 1. Audra, P., Quinif, Y. & Rochette, P., 2002. The genesis of the Tennengebirge karst and caves (Salzburg, Austria). Journal of Cave and Karst Studies, 64: 153-164.
  • 2. Beck-Mannagetta, P. & Matura, A., 1980. Geologische Karte von Österreich 1:500 000 - 1 Bl. Farbdruck, Wien (Geologische Bundesanstalt).
  • 3. Bella, P., Gradziński, M., Hercman, H., Leszczyński, S. & Nemec, W., 2021. Sedimentary anatomy and hydrological record of relic fluvial deposits in a karst cave conduit. Sedimentology, 68: 425-448.
  • 4. Bernardini, S., Bellatreccia, F., Columbu, A., Vaccarelli, I., Pellegrini, M., Jurado, V., Del Gallo, B., Saiz-Jimenez, C., Sodo, A., Millo, C., Jovane, L. & De Waele, J., 2021. Morphomineralogical and bio-geochemical description of cave manganese stromatolite-like patinas (Grotta del Cervo, Central Italy) and hints on their paleohydrological-driven genesis. Frontiers in Earth Science, 9: id.692.
  • 5. Bonatti, E., Zerbi, M., Kay, R. & Rydell, H., 1976. Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centers. Geological Society of America Bulletin, 87: 83-94.
  • 6. Bosák, P., 1989. Clays and sands in paleokarst. In: Bosák, P., Ford, D. C., Głazek, J. & Horáček, I. (eds), Paleokarst, A Systematic and Regional Review. Akademia, Praha - Elsevier, Amsterdam, pp. 431-442.
  • 7. Bosák, P., Bella, P., Cílek, V., Ford, D. C., Hercman, H., Kadlec, J., Osborne, A. & Pruner, P., 2002. Ochtiná Aragonite Cave (Western Carpathians, Slovakia): morphology, mineralogy of the fill and genesis. Geologica Carpathica, 53: 399-410.
  • 8. Bosák, P., Mihevc, A., Pruner, P., Melka, K., Venhodová, D. & Langrová, A., 1999. Cave fill in the Črnotiče Quarry, SW Slovenia: palaeomagnetic, mineralogical and geochemical study. Acta Carsologica, 28/2: 15-39.
  • 9. Boston, P., 2004. Biofilms. In: Gunn, J. (ed.), Encyclopedia of Caves and Karst Science. Taylor and Francis Group, New York, pp. 299-303.
  • 10. Böhm, F. & Brachert, T. C., 1993. Deep-water stromatolites and Frutexites Maslov from the Early and Middle Jurassic of S-Germany and Austria. Facies, 28: 145-168.
  • 11. Braun, R., 1998. Die Geologie des Hohen Gölls. Torrener-Joch- Zone/Jenner/Hoher Göll eine durch Kontinent/Kontinent- Kollision ausgelöste Gleitdecke in den auglbodenschichten (mittlerer Oberjura) der Berchtesgadener Alpen. Nationalpark Berchtesgaden, Forschungsbericht 40, Plenk, Berchtesgaden, 192 pp.
  • 12. Cílek, V. & Fábry, J., 1989. Epigenetic manganese-rich layers in karst fillings of the Zlatý kůn Hillock, Bohemian Karst. Československý kras, 40: 37-55. [In Czech, with English summary.]
  • 13. Clemens, T., Jantschke, H. & Schäffler M., 1995. Zur Herkunft der Eisen-Mangan-Erze in Höhlensedimenten der Horizontalhöhlen in der Reiteralm (Berchtesgadener Alpen). Die Höhle, 46: 66-74.
  • 14. Corbin, J. C., Person, A., Iatzoura, A., Ferré, B. & Renard, M., 2000. Manganese in Pelagic carbonates: indication of major Tectonic events during the geodynamic evolution of a passive continental margin (the Jurassic European Margin of the Tethys-Ligurian Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 156: 123-138.
  • 15. Cornelius, H. P. & Plöchinger, B., 1952. Der Tennengebirgs-N- Ränd mit seinen Manganerzen und die Berge im Bereich des Lammertales. Jahrbuch Geologische Bundesanststalt, 95: 145-225.
  • 16. Ebli, O., Vetö, I., Lobitzer, H., Sajgó, C., Demény, A. & Hetényi, M., 1998. Primary productivity and early diagenesis in the Toarcian Tethys on the example of the Mn-rich black shales of the Sachrang Formation, Northern Calcareous Alps. Organic Geochemistry, 29: 1635-1647.
  • 17. Fischer, K., 1990. Höhlenniveaus und Altreliefgenerationen in den Berchtesgadener Alpen. Mitteilungen der Geographischen Gesellschaft in München, 75: 47-59.
  • 18. Ford, D. C. & Wiliams, P. W., 2007. Karst Hydrogeology and Geomorphology. Wiley, Chichester, 562 pp.
  • 19. Frisch, W. & Gawlick, H.-J., 2003. The nappe structure of the central Northern Calcareous Alps and its disintegration during Miocene tectonic extrusion - a contribution to understanding the orogenic evolution of the Eastern Alps. International Journal of Earth Sciences, 92:712-727.
  • 20. Frisch, W., Kuhlemann, J., Dunkl, I. & Székely, B., 2001. The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps - a mosaic stone in the geomorphological evolution of the Eastern Alps. International Journal of Earth Sciences, 90: 500-518.
  • 21. Gawlick, J. H., Aubrecht, R., Schlagintweit, F., Missoni, S. & Plašienka, D., 2015. Ophiolitic detritus in Kimmeridgian resedimented limestones and its provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria). Geologica Carpathica, 66: 473-487.
  • 22. Germann, K., 1973. Deposition of manganese and iron carbonates and silicates in Liassic marls of the Northern Limestone Alps (Kalkalpen). In: Amstutz, G. C. & Bernard, A. J. (eds), Ores in Sediments. Springer, Berlin, pp. 129-138.
  • 23. Golicz, M., 2013. Recent activity in Hoher Göll. In: Kicińska D. (ed.), Polish Caving 2009-2013. Komisja Taternictwa Jaskiniowego Polskiego Związku Alpinizmu (Caving Commision of Polish Mountaineering Association). Pracownia Kreatywna Bezliku, Kraków, pp. 13-14.
  • 24. Gradziński, M., Banaś, M. & Uchman, A., 1995. Biogenic origin of manganese flowstones from Jaskinia Czarna Cave, Tatra Mts., Western Carpathians. Annales Societatis Geologorum Poloniae, 65: 19-27.
  • 25. Günther, W. & Tichy, G., 1979. Manganberg- undschurfbaue im Bundesland Salzburg. Mitteilungen der Gesellschaft für Salzburger Landeskunde, 119: 351-373.
  • 26. Hansel, C. M. & Learman, D. R., 2016. Geomicrobiology of manganese. In: Ehrlich, H. L., Newman, D. K. & Kappler, A. (eds), Ehrlich's Geomicrobiology. Sixth Edition. CRC Press, pp. 403-433.
  • 27. Häuselmann, Ph., Plan., L., Pointner, P. & Fiebig, M., 2020. Cosmogenic nuclide dating of cave sediments in the Eastern Alps and implications for erosion rates. International Journal of Speleology, 49: 107-118.
  • 28. Hercman, H., 2000. Reconstruction of paleoclimatic changes in central Europe between 10 and 200 thousand years BP, based on analysis of growth frequency of speleothems. Studia Quaternaria, 17: 35-70.
  • 29. Hill, C. A. & Forti, P., 1997. Cave Minerals of the World. National Speleological Society, Huntsville, 463 pp.
  • 30. Jach, R. & Dudek, T., 2005. Origin of a Toarcian manganese carbonate/silicate deposit from the Krížna unit, Tatra Mountains, Poland. Chemical Geology, 224: 136-152.
  • 31. Jenkyns, H. C., Géczy, B. & Marshall, J. D., 1991. Jurassic manganese carbonates of Central Europe and the Early Toarcian anoxic event. Journal of Geology, 99: 137-149.
  • 32. Jurgan, H., 1968. Sedimentologie des Lias der Berchtesgadener Kalkalpen. Geologische Rundschau, 58: 464-501.
  • 33. Kashima, N., 1983. On the wad-minerals from the cavern environment. International Journal of Speleology, 13: 67-72.
  • 34. Kicińska, D., 2021. Origin of fine-grained clastic sediments in caves of the Hoher Göll massif (Northern Calcareous Alps, Austria). Annales Societatis Geologorum Poloniae, 91: 363-373.
  • 35. Klappacher, W. & Knapczyk, H., 1979. Salzburger Höhlenbuch. Landesverein für Höhlenkunde in Salzburg, Salzburg, 487 pp.
  • 36. Klappacher, W. & Völkl, G., 2016. Hoher Göll. In: Spötl, Ch., Plan, L. & Christian, E. (eds), Höhlen und Karst in Österreich. Oberösterreichisches Landesmuseum, Linz, pp. 531-530.
  • 37. Krainer, K., Mostler, H. & Haditsch, J. G., 1994. Jurassische Beckenbildung in den Nördlichen Kalkalpen bei Lofer (Salzburg) unter besonderer Berücksichtigung der ManganerzGenese. Abhandlungen der Geologischen Bundesanstalt, 50: 257-293.
  • 38. Krische, O., Goričan, Š. & Gawlick, J. H., 2014. Erosion of a Jurassic ophiolitic nappe-stack as indicated by exotic components in the Lower Cretaceous Rossfeld Formation of the Northern Calcareous Alps (Austria). Geologica Carpathica, 65: 3-24.
  • 39. Meixner, H. & Paar, W., 1977. Eine Manganvererzung mit Braunit vom Gamskar am Hohen Göll, Salzburg. Der Karinthin, 76: 303-309.
  • 40. Moore, G. W., 1981. Origin of black deposits in caves. In: Beck, B. F. (ed.), Proceedings of the 8th International Congress of Speleology: Bowling Green, Kentucky, U.S.A., July 18 to 24, 1981. National Speleological Society, Huntsville, Alabama, pp. 642-644.
  • 41. Northup, D. E. & Lavoie, K. H., 2001. Geomicrobiology of caves: A review. Geomicrobiology Journal, 18: 199-222.
  • 42. Ostwald, J., 1992. Mineralogy, paragenesis and genesis of the braunite deposits of the Mary Valley Manganese Belt, Queensland, Australia. Mineralium Deposita, 27: 326-335.
  • 43. Peck, S. B., 1986. Bacterial deposition of iron and manganese oxides in North American caves. Bulletin of the National Speleological Society, 48: 26-30.
  • 44. Plöchinger, B., 1955. Zur Geologie des Kalkalpenabschnittes vom Torrener Joch zum Ostfuss des Untersberges; die Göllmasse und die Halleiner Halstätter Zone. Jahrbuch Geologische Bundesanststalt, 3: 93-144.
  • 45. Plöchinger, B., 1987. Geologische Karte der Republik Österreich 1:50.000, Blatt 94 Hallein. Geologische Bundesanstalt, Vienna.
  • 46. Rantitsch, G., Melcher, F., Meisel, T. & Rainer, T., 2003. Rare earth, major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hydrogenous origin of stratiform manganese deposits. Mineralogy and Petrology, 77: 109-127.
  • 47. Roy, S. J., 1997. Genetic diversity of manganese deposition in the terrestrial geological record. In: Nicholson, K., Hein, J. R., Bühn, B. & Dasgupta, S. (eds), Manganese mineralisation: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society, London, Special Publication, 119: 5-28.
  • 48. Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Masetti, D. & Scopelliti, G., 2009. Petrography and high-resolution geochemical records of Lower Jurassic manganese-rich deposits from Monte Mangart, Julian Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 97-109.
  • 49. Sasowsky, I. D., 2007. Clastic sediments in caves - imperfect recorders of processes in karst. Acta Carsologica, 36: 143-149.
  • 50. Satterley, A. K., 1994. Sedimentology of the Upper Triassic reef complex at the Hochkönig Massif (Northern Calcareous Alps, Austria). Facies, 30: 119-149.
  • 51. Szczygieł, J., Wróblewski, W., Mendecki, M. J., Hercman, H., & Bosák, P., 2020a. Soft-sediment deformation structures in cave deposits and their possible causes (Kalacka Cave, Tatra Mts., Poland). Journal of Structural Geology, 140: 104-161.
  • 52. Szczygieł, J., Hercman, H., Hoke, G., Gąsiorowski, M., Błaszczyk, M. & Sobczyk, A., 2020b. No valley deepening of the Tatra Mountains (Western Carpathians) during the past 300 ka. Geology, 48: 1006-1011.
  • 53. Szczygieł, J., Baroň, I., Melichar, R., Plan, L., Mitrović-Woodell, I., Kaminsky, E., Scholz, D. & Grasemann, B., 2022b. Post Miocene tectonics of the Northern Calcareous Alps. Scientific Reports, 12: 17730.
  • 54. Tichy, G., 1979. Geologische Karte der Rossfeldgruppe, des Hohen Göll und des Hagengebirges 1:50 000. In: Klappacher, W. & Knapczyk, H. (eds), Salzburger Höhlenbuch. Landesverein für Höhlenkunde in Salzburg, 3.
  • 55. Tollman, A., 1980. Geology and Tectonics of the Eastern Alps (middle sector). Abhandlungen der Geologischen Bundesanstalt, 34: 197-255.
  • 56. Tumiati, S., Martin, S. & Godard, G., 2010. Hydrothermal origin of manganese in the high-pressure ophiolite metasediments of Praborna ore deposit (Aosta Valley, Western Alps). European Journal of Mineralogy, 22: 577-594.
  • 57. Usui, A., Bau, M. & Yamazaki, T., 1997. Manganese microchimneys buried in the Central Pacific pelagic sediments: evidence of interpolate water circulation? Marine Geology, 141: 269-285.
  • 58. Velilla, N. & Jiménez-Millán, J., 2003. Origin and metamorphic evolution of rocks with braunite and pyrophanite from the Iberian Massif (SW Spain). Mineralogy and Petrology, 78: 73-91.
  • 59. White, W. B., Vito, C. & Scheetz, B. E., 2009. The mineralogy and trace element chemistry of black manganese oxide deposits from caves. Journal of Cave and Karst Studies, 71: 136-143.
  • 60. Zankl, H., 1969. Der Hohe Göll. Aufbau und Lebensbild eines Dachstein-Riffes in der Obertrias der nördlichen Kalkalpen. Abhandlungen der Senckenberg Gesellschaft, 519: 1-120.
  • 61. Zupan Hajna, N., Mihevc, A., Pruner, P. & Bosák, P., 2008. Palaeomagnetism and magnetostratigraphy of karst sediments in Slovenia. Carsologica, 8: 1-266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5433cee7-96b0-425c-9857-68dbc9df673c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.