PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Load-Bearing Capacity of the Bonded Joint of Hot-Dip Galvanised Steel Elements with CFRP Fabric – Pilot Laboratory and Numerical Investigations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an attempt was made to determine the load-bearing capacity of a bonded joint of galvanized steel elements with CFRP fabric. This issue is extremely relevant to the use of bonded carbon fiber fabric as a mean of reinforcing hot-dip galvanized steel structures. This technique is used in engineering practice for both hot-rolled and cold-formed steel elements. In order to obtain the necessary parameters for modelling bonded joints of galvanised steel thin-walled elements, laboratory tests were carried out. In the first stage, four specimens made of 50 mm diameter steel cylinders bonded to 16 mm thick hot-dip galvanised steel sheet of S350 GD were subjected to the pull-off test. In this connection the SikaWrap 230C composite fabric embedded in SikaDur 330 adhesive layer was investigated. In the second stage, the axial tensile test of the bonded butt joint using the same materials was performed. In this stage, 10 hot-dip galvanised steel sheet samples of S350 GD and 16 mm thickness were tested. The discussion on the failure mechanism in the context of the bonding capacity of the composite joint was carried out. Moreover the advanced numerical model using the commercial FE program ABAQUS/Standard and the coupled Cohesive Zone Model was developed. The significant influence of the preparation method of steel element surface and the thickness of the adhesive layer on the failure mechanism of the joint and the value of the maximum failure force was shown.
Twórcy
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, ul. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, ul. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Department of Structural Engineering, Faculty of Civil Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Han X., Hou S., Ying L., Hou W., Aliyev H. On the fracture behaviour of adhesively bonded CFRP hat-shaped thin-walled beam under axial crushing load: An experimental and modelling study. Compos. Struct., 2019, 215: 258–265.
  • 2. Subramanian S. Study on the performance of CFRP strengthened circular hollow steel sections. Int. J. Res. Eng. Technol., 2015, 4: 118–121.
  • 3. Tang H., Wang C., Wang R. Enhancing Stability of Thin-Walled Short Steel Channel Using CFRP under Eccentric Compression. Int. J. Polym. Sci. 2016, 2790385.
  • 4. Machelski C., Wrzesiński M. Wzmacnianie elementów konstrukcji stalowych z wykorzystaniem taśm CFRP. Mater. Bud., 2015, 10: 51–54.
  • 5. Rzeszut K., Dybizbański M. Structural behavior of sigma-type thin-walled cold-formed steel beams reinforced with CFRP textile. Ce/papers, 2023, 6(3–4): 11–15.
  • 6. Szewczak I., Rzeszut K., Różyło P., Samborski S. Laboratory and numerical analysis of steel coldformed Sigma beams retrofitted by bonded CFRP tapes. Meterials, 2020, 13(19): 1–14.
  • 7. Kowal M.R. Strengthening of steel elements with FRP composites. Ph.D. Thesis, Lublin University of Technology, Lublin, Poland, 2016. (In Polish).
  • 8. Szewczak I., Różyło P., Snela M., Rzeszut K. Impact of adhesive layer thickness on the behavior of reinforcing thin-walled Sigma-type steel beams with CFRP tapes. Materials, 2022, 15(3): 1–12.
  • 9. Miller T.C., Chajes M.J., Mertz D.R., Hastings J.N. Strengthening of a steel bridge girder using CFRP plates. J. Bridge Eng, 2001, 6: 514–522.
  • 10. Jiao H., Zhao X. CFRP strengthened butt-welded very high strength (vhs) circular steel tubes. ThinWalled Struct, 2004, 42: 963–978.
  • 11. Rudawska A., Łukasiewicz M. Wpływ obróbki mechanicznej na wytrzymałość połączeń klejowych wybranych materiałów konstrukcyjnych. Przegląd Spawalnictwa, 2008, 8.
  • 12. Critchlow G.W., Yendall K.A., Barani D., Quinn A., Adrews F. Strategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloys. Int. J. Adhesion and Adhesives, 2006. 26.
  • 13. Kowal M., Różyło P. Effect of bond end shape on CFRP/steel joint strength. Composite Structures, 2022, 284: 1–12.
  • 14. Haghani R., Al-Emrani M., Kliger R. Interfacial stress analysis of geometrically modified adhesive joints in steel beams strengthened wits FRP laminates. Construction and Building Materials, 2009, 23(3): 1413–1422.
  • 15. Szewczak A. Impact of epoxy resin modification on its strength parameters. Budownictwo i Architektura, 2019, 18(4): 41–50.
  • 16. Szewczak A. Changes in the rheological and adhesive properties of epoxy resin used in the technology of reinforcement of structural elements with CFRP tapes. Materials, 2023, 16: 1–17.
  • 17. Piekarczyk M. Application of glued connections in metal structures. Technical Transactions, Wyd. Politechniki Krakowskiej, 2012, 1-B.
  • 18. Teng J.G., Yu T., Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites. Journal of Constructional Steel Research, 2012, 78: 131–143.
  • 19. PN-EN ISO 4624:2016(E) Paints and varnishes – Pul-off test for adhesion
  • 20. Dybizbański M.A, Rzeszut K. experimental and theoretical investigation of galvanized steel and fiber-reinforced polymer composites textile adhesive double lap joints. Advances in Science and Technology Research Journal, 2023, 17(4): 110–120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-542a98ea-7fa2-458f-8e7c-f51878413c92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.