PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finitely additive functions in measure theory and applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we consider, and make precise, a certain extension of the Radon–Nikodym derivative operator, to functions which are additive, but not necessarily sigma-additive, on a subset of a given sigma-algebra. We give applications to probability theory; in particular, to the study of μ-Brownian motion, to stochastic calculus via generalized Itô-integrals, and their adjoints (in the form of generalized stochastic derivatives), to systems of transition probability operators indexed by families of measures μ, and to adjoints of composition operators.
Rocznik
Strony
323--339
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Schmid College of Science and Technology, Chapman University, One University Drive Orange, California 92866, USA
  • The University of Iowa, Department of Mathematics, 14C McLean Hall, Iowa City, IA 52246, USA
Bibliografia
  • [1] S. Albeverio, L. Nizhnik, A Schrödinger operator with a δ′-interaction on a Cantor set and Krein–Feller operators, Math. Nachr. 279 (2006), no. 5–6, 467–476.
  • [2] D. Alpay, On linear combination of positive functions, associated reproducing kernel spaces and a non hermitian Schur algorithm, Arch. Math. (Basel) 58 (1992), 174–182.
  • [3] D. Alpay, A theorem on reproducing kernel Hilbert spaces of pairs, Rocky Mountain J. Math. 22 (1992), 1243–1258.
  • [4] D. Alpay, P. Jorgensen, New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry, Opuscula Math. 41 (2021), no. 3, 283–300.
  • [5] D. Alpay, P. Jorgensen, mu-Brownian motion, dualities, diffusions, transforms, and reproducing kernel spaces, J. Theoret. Probab. 35 (2022), no. 4, 2757–2783.
  • [6] D. Alpay, P. Jorgensen, D. Levanony, On the equivalence of probability spaces, J. Theoret. Probab. 30 (2017), no. 3, 813–841.
  • [7] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
  • [8] N. Aronszajn, Quadratic forms on vector spaces, Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, 29–87.
  • [9] S.D. Chatterji, Les martingales et leurs applications analytiques, [in:] École d’Été de Probabilités: Processus Stochastiques (Saint Flour, 1971), Lecture Notes in Math., vol. 307, Springer Verlag, 1973, 27–164.
  • [10] H. Dym, H.P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem, Probability and Mathematical Statistics, vol. 31, Academic Press, New York–London, 1976.
  • [11] W. Feller, On boundaries defined by stochastic matrices, Proc. Sympos. Appl. Math. 7 (1957), 35–40.
  • [12] U. Freiberg, Refinement of the spectral asymptotics of generalized Krein Feller operators, Forum Math. 23 (2011), no. 2, 427–445.
  • [13] T. Hida, White noise analysis and applications in random fields, [in:] Dirichlet forms and stochastic processes (Beijing, 1993), de Gruyter, Berlin, 1995, 185–189.
  • [14] K. Itô, Stochastic Processes, Springer-Verlag, Berlin, 2004.
  • [15] P. Jorgensen, F. Tian, Reproducing kernels and choices of associated feature spaces, in the form of L2-spaces, J. Math. Anal. Appl. 505 (2022), no. 2, Article no. 125535.
  • [16] L.A. Minorics, Spectral asymptotics for Krein–Feller operators with respect to V-variable Cantor measures, Forum Math. 32 (2020), no. 1, 121–138.
  • [17] E. Nelson, Topics in Dynamics I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969.
  • [18] E. Nelson, Stochastic mechanics of particles and fields, [in:] Quantum Interaction, Lecture Notes in Comput. Sci., vol. 8369, Springer, Heidelberg, 2014, 1–5.
  • [19] J. Neveu, Processus aléatoires gaussiens, Number 34 in Séminaires de Mathématiques Supérieures, Les Presses de l’Université de Montréal, 1968.
  • [20] F. Riesz, Untersuchungen über Systeme integrierbarer Funkionen, Math. Ann. 69 (1910), 449–497.
  • [21] L. Schwartz, Probabilités cylindriques et fonctions aléatoires, [in:] Séminaire Laurent Schwartz 1969–1970: Applications radonifiantes, Exp. No. 6, École Polytechnique, 1970, 1–8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5427482f-f209-4695-974b-28443b9a503b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.