PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multicriteria analysis of environmental impact of different options of external walls construction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wielokryterialna analiza zrównoważonego rozwoju środowiska i energetycznej wydajności konstrukcji budynku
Języki publikacji
EN
Abstrakty
EN
This paper assesses the compositions of exterior wall alternatives of a near zero-energy residential building over environmental profiles, such as embodied energy or embodied CO2 and SO2 emissions, by using the LCA methodology (“cradle to gate”) as well as over thermalphysical data. The assessment results are calculated by using four methods of a multi-criteria decision analysis. The objective is to optimize the material composition of a constructional design in order to create green Slovak residential construction by the application of natural vegetable materials.
PL
W niniejszym artykule ocenione zostają kompozycje alternatyw ścian zewnętrznych w niemal zero-energetycznym budynku mieszkalnym na tle profilów środowiskowych, takich jak energia całkowita czy całkowita emisja CO2 i SO2, przez zastosowanie metodologii LCA (w pełnym zakresie) oraz danych termofizycznych. Wyniki ocen obliczane są z zastosowaniem czterech metod wielokryterialnej analizy decyzyjnej. Celem jest optymalizacja materiałowej kompozycji projektu budowlanego w celu stworzenia ekologicznego budownictwa mieszkaniowego na terenie Słowacji przez zastosowanie naturalnych materiałów roślinnych
Rocznik
Strony
379--386
Opis fizyczny
Bibliogr. 21 poz., wz., tab., wykr.
Twórcy
  • Institute of Structural Engineering, Faculty of Civil Engineering, Technical University of Košice, Slovakia
  • Institute of Structural Engineering, Faculty of Civil Engineering, Technical University of Košice, Slovakia
Bibliografia
  • [1] Comparison of energy systems using Life Cycle Assessment, A Special Report of the World Energy Council, London 2004.
  • [2] Khasreen M.M., Banfill P.F.G., Menzies G.F., Life-Cycle Assessment and the Environmental Impact of Buildings: A Review, Sustainability, 2009, 674-701.
  • [3] Using official statistics to calculate greenhouse gas emissions, A statistical guide, Eurostat, Luxembourg 2010.
  • [4] Raynsford N., The UK’s approach to sustainable development in construction, Building Research and Information, 27, 1999, 419-423.
  • [5] Citherlet S., Towards the holistic assessment of building performance based on an integrated simulation approach, Federal Institute of Technology, Switzerland 2001.
  • [6] Communication from The Commission to The European parliament, The Council, The European economic and social committee and committee of the regions, Brussels 2011.
  • [7] Acquaye A., Duffy A., Basu B., Assessment of the embodied CO2eq in buildings towards a sustainable building design and construction, Second International Conference on Whole Life Urban Sustainability and its Assessments; Conference Proceedings: SUE-MoT 2009, Loughborough 2009.
  • [8] Asif M., Muneer T., Kelley R., Life cycle assessment: A case study of a dwelling home in Scotland, Building Environment, 42, 2007, 1391-1394.
  • [9] Petersen K., Solberg B., Greenhouse gas emissions and costs over the life cycle of wood and alternative flooring materials, Climatic Change, 64, 2004, 143-167
  • [10] Thormark C., A low energy building in a life cycle: its embodied energy, energy need for operation and recycling potential, Building and Environment, 2002, 429-435.
  • [11] Gustavsson L., Joelsson A., Sathre R., Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building, Energy and Buildings, 42, 2010, 230-242.
  • [12] Nemry F. et al., Options to reduce the environmental impacts of residential buildings in the European Union – potential and costs, Energy and Buildings, 42, 2010, 976-984.
  • [13] Monteiro H., Freire F., Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods, Energy and Buildings, 47, 2012, 572-583.
  • [14] STN 73 0540 Thermal-technical properties of building constructions and buildings, Thermal protection of buildings, SUTN, Slovakia 2002.
  • [15] Rossia B. et al., Life-cycle assessment of residential buildings in three different European locations, basic tool, Building and Environment, 51, 2012, 395-401.
  • [16] Waltjen T., Passivhaus-Bauteilkatalog, Ökologisch bewertete Konstruktionen, Österreichisches Institut für Baubiologie und Bauökologie, Wien 2009.
  • [17] Wihnan J., Humidity in straw bale walls and its effect, doctoral dissertation, University of East London School of Computing and Technology, Dagenham 2007.
  • [18] Hejhalek J., Tepelná akumulácia a teplotná zotrvačnosť u drevostavieb, Stavebnictví a interiér 2, 2001.
  • [19] Korvin P., Theoretical bases of multi-criteria decision, doctoral dissertation, 2009.
  • [20] Lippke B. et al., Characterizing the importance of carbon stored in wood products, Wood and Fiber Science, 42, 2010, 5-14.
  • [21] Berge B., The ecology of building materials, Second edition of book, Oxford 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5425a574-32f1-4baa-a64f-4821aae09079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.