Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, twenty seven [(Fe–35wt%Mn)100−x–Cux] alloy samples were processed using high-energy ball milling, followed by uniaxial compaction under different processing conditions. The compressibility behavior in terms of relative density (RD) was examined with milling time (MT: 1 h, 5.5 h, and 10 h), ball-to-powder mass ratio (BPMR: 5:1, 10:1, and 15:1), milling speed (MS: 100 rev/min, 200 rev/min, and 300 rev/min), compaction pressure (CP: 25–1,100 MPa), and alloy composition (Cu content [CC]: 0 wt%, 5 wt%, 10 wt%). Particle size analysis using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM) combined with energy-dispersive X-ray spectroscopy (EDS) were applied for microstructural characterization. The experiments were conducted based on the central composite design of response surface methodology (RSM), and the results for the compaction behavior were examined with the input parameters. Analysis of variance (ANOVA) test was applied to determine the most significant input parameters. The attained results revealed that increasing ball milling parameters (MT, MS, and BPMR) resulted in significant enhancements in the microstructural features, such as improved elemental dispersion and occurrence of refined particles with substantial decrease in the crystallite size. On the other hand, increasing the input parameters exhibited a detrimental influence on the compactibility and RD of the alloys. In addition, increasing the CC resulted in a substantial improvement in the compressibility and RD of the developed alloys. The recommended combination of the studied variables includes MT for 5 h, MS for 150 rev/min, BPMR of 10:1, and 10 wt%Cu to attain an acceptable compromise of enhanced microstructure features, improved compaction response, and RD.
Wydawca
Czasopismo
Rocznik
Tom
Strony
410--429
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia
- Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43511, Egypt
autor
- Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia
autor
- Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia
Bibliografia
- [1] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. https://doi.org/10.1016/S0079-6425(99)00010-9.
- [2] Koch CC. Intermetallic matrix composites prepared by mechanical alloying – a review. Mater Sci Eng A. 1998;A244:39–48. https://doi.org/10.1016/S0921-5093(97)00824-1.
- [3] Bhadeshia HH. Mechanically alloyed metals. J Mater Sci Technol. 2000;1:1404–11. https://doi.org/10.1179/026708300101507361.
- [4] Koch CC, Whittenberger JD. Review: mechanical milling/alloying of Intermetallic. Intermetallics. 1996;4:339–55. https://doi.org/10.1016/0966-9795(96)00001-5.
- [5] Shaikh MA, Iqbal M, Akhter JI, Ahmad M, Zaman Q, Akhtar M, et al. Alloying of immiscible Ge with Al by ball milling. Mater Lett. 2003;57:3681–5. https://doi.org/10.1016/S0167-577X(03)00149-6.
- [6] Ma E, Atzmon M. Phase transformations induced by mechanical alloying in a binary system. Mater Chem Phys. 1995;39:249–67. https://doi.org/10.1016/0254-0584(94)01446-N.
- [7] Romankov S, Sha W, Kaloshkin SD, Kaevitser K. Formation of Ti-Al coatings by mechancial alloying method. Surf Coat Technol. 2006;201:3235–45. https://doi.org/10.1016/j.surfcoat.2006.06.044.
- [8] Bajakke PA, Malik VR, Saxena KK, Deshpande AS. A novel ultrahigh conductive Al-Cu composite produced via microwave sintering and post- treated by friction stir process. Adv Mater Process Technol. 2021; https://doi.org/10.1080/2374068X.2021.1945270.
- [9] El-Eskandarani MS. Mechanical alloying for fabrication of advanced engineering materials. New York, U.S.A: Noyes Publications, William Andrew Publishing; 2001. pp. 22–60.
- [10] Gaffet E. Ball milling: an E-v-T parameter phase diagram. Mater Sci Eng A. 1991;135:291–3. https://doi.org/10.1016/0921-5093(91)90578-B.
- [11] Suryanarayana C, Chen GH, Froes FS. Milling maps for phase identification during mechanical alloying. Scripta Metall Mater. 1992;26:1727–32. https://doi.org/10.1016/0956-716X(92)90542-M.
- [12] Alshataif YA, Sivasankaran S, Al-Mufadi FA, Alaboodi AS, Ammar HR. Synthesis, microstructures and mechanical behaviour of Cr0.21Fe0.20Al0.41Cu0.18 and Cr0.14Fe0.13Al0.26Cu0.11Si0.25Zn0.11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing. Met Mater Int. 2021;27:139–55. https://doi.org/10.1007/s12540-020-00660-6.
- [13] Clinktan R, Senthil V, Ramkumar KR, Sivasankaran S, Al-Mufadi FA. Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram Int. 2019;45:3492–501. https://doi.org/10.1016/j.ceramint.2018.11.007.
- [14] Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater. 2018;7:93–110. https://doi.org/10.1007/s40204-018-0091-4.
- [15] Mandal S, Ummadi R, Bose M, Balla VK, Roy M. Fe–Mn–Cu alloy as biodegradable material with enhanced antimicrobial properties. Mater Lett. 2019;237:323–7. https://doi.org/10.1016/j.matlet.2018.11.117.
- [16] Ma Z, Gao M, Na D, Li Y, Tan L, Yang K. Study on a biodegradable antibacterial Fe-Mn-C-Cu alloy as urinary implant material. Mater Sci Eng C. 2019;103:109718. https://doi.org/10.1016/j.msec.2019.05.003.
- [17] Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–62. https://doi.org/10.1016/j.biomaterials.2006.05.029.
- [18] Ali S, Rani AM, Baig Z, Ahmed SW, Hussain G, Subramaniam K, et al. Biocompatibility and corrosion resistance of metallic biomaterials. Corros Rev. 2020;38:381–402. https://doi.org/10.1515/corrrev-2020-0001.
- [19] Vojtěch D, Kubasek J, Capek J, Michalcova A, Pospíšilová I. Corrosion and mechanical behavior of biodegradable metallic biomaterials. Solid State Phenom. 2015;227:431–34. https://doi.org/10.4028/www.scientific.net/SSP.227.431.
- [20] Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10:3346–53. https://doi.org/10.1016/j.actbio.2014.04.007.
- [21] Lin W, Qin L, Qi H, Zhang D, Zhang G, Gao R, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 2017;54:454–68. https://doi.org/10.1016/j.actbio.2017.03.020.
- [22] Drynda A, Hassel T, Bach FW, Peuster M. In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J Biomed Mater Res Part B. 2015;103:649–60. https://doi.org/10.1002/jbm.b.33234.
- [23] Dehestani M, Adolfsson E, Stanciu LA. Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications. Mater Des. 2016;109:556–69. https://doi.org/10.1016/j.matdes.2016.07.092.
- [24] Schinhammer M, Steiger P, Moszner F, Löffler JF, Uggowitzer PJ. Degradation performance of biodegradable FeMnC (Pd) alloys. Mater Sci Eng C. 2013;33:1882–93. https://doi.org/10.1016/j.msec.2012.10.013.
- [25] Hufenbach J, Wendrock H, Kochta F, Kühn U, Gebert A. Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties. Mater Lett. 2017;186:330–3. https://doi.org/10.1016/J.MATLET.2016.10.037.
- [26] Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65:540–3. https://doi.org/10.1016/j.matlet.2010.10.068.
- [27] Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res Part A. 2010;93:1–11. https://doi.org/10.1002/jbm.a.32224.
- [28] Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–20. https://doi.org/10.1016/j.actbio.2010.11.001.
- [29] Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-Barough S, Hermawan H. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater Sci Eng C. 2018;88:88–94. https://doi.org/10.1016/j.msec.2018.03.005.
- [30] Safaie N, Khakbiz M, Sheibani S, Bagha PS. Synthesizing of nanostructured Fe-Mn alloys by mechanical alloying process. Procedia Mater Sci. 2015;11:381–5. https://doi.org/10.1016/j.mspro.2015.11.134.
- [31] Bagha PS, Khakbiz M, Safaie N, Sheibani S, Ebrahimi-Barough S. Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35 wt.% Mn alloy. J Alloys Compd. 2018;768:166–75. https://doi.org/10.1016/j.jallcom.2018.07.261.
- [32] Sivasankaran S, Sivaprasad K, Narayanasamy R, Iyer VK. An investigation on flowability and compressibility of AA 6061100-x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 2010;201:70–82. https://doi.org/10.1016/j.powtec.2010.03.013.
- [33] Sánchez F, Bolarín AM, Molera P, Mendoza JE, Ocampo M. Relationship between particle size and manufacturing processing and sintered characteristics of iron powders. Rev Latinoam Metal Mater. 2003;23:35–40.
- [34] Ammar HR, Sivasankaran S, Alaboodi AS. Investigation of the microstructure and compressibility of biodegradable Fe–Mn–Cu/W/Co nanostructured alloy powders synthesized by mechanical alloying. Materials. 2021;14:1–23. https://doi.org/10.3390/ma14113088.
- [35] Ammar HR, Sivasankaran S, Alaboodi AS, Al-Mufadi FA. Synthesis, microstructural investigation and compaction behavior of Al0.3CrFeNiCo0.3Si0.4 nanocrystalline high entropy alloy. Adv Powder Technol. 2021;32:398–412. https://doi.org/10.1016/j.apt.2020.12.016.
- [36] Ming QY, He LY. Powder-suspension dielectric fluid for EDM. J Mater Process Technol. 1995;52:44–54. https://doi.org/10.1016/0924-0136(94)01442-4.
- [37] Montgomery DC. Design and analysis of experiments. 4th ed. New York, USA: Wiley; 1997. pp. 65–138.
- [38] Sivasankaran S, Sivaprasad K, Narayanasamy R, Satyanarayana PV. X-ray peak broadening analysis of AA 6061100−x- x wt.% Al2O3 nanocomposite prepared by mechanical alloying. Mater Charact. 2011;62:661–72. https://doi.org/10.1016/j.matchar.2011.04.017.
- [39] Sivasankaran S. Optimization on dry sliding wear behavior of yellow brass using face centered composite design. AIMS Mater Sci. 2019;6:80–96. https://doi.org/10.3934/matersci.2019.1.80.
- [40] Sivasankaran S, Ramkumar KR, Al-Mufadi FA, Irfan OM. Effect of TiB2/Gr hybrid reinforcements in Al 7075 matrix on sliding wear behavior analyzed by response surface methodology. Met Mater Int. 2021;27:1739–55. https://doi.org/10.1007/s12540-019-00543-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-541a37eb-5a1b-496e-a61f-7eb19c129a54