PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation of ZVS/ZCS high efficiency AC/DC converter for high power applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increased power density, reduced switching losses with minimum electromagnetic interference (EMI), and high efficiency are essential requirements of power converters. To achieve these characteristics, soft power converters employing soft switching techniques are indispensable. In this paper, a ZCS/ZVS PWM AC/DC converter topology has been emphasized, which finds applications in high power systems such as automobile battery charging and renewable energy systems. This converter scheme maintains zero current and zero voltage switching conditions at turn on and turn off moments of semiconductor switches, respectively and soft operation of rectifier diodes that lead to negligible switching and diode reverse recovery losses. Moreover, it improves power quality and presents high input power factor, low total harmonic distortion of the input current (THDI ) and improved efficiency. The validity of theoretical analysis of the proposed converter has been carried out experimentally on a 10 kW laboratory prototype. Experimental results prove that the soft switching operation of the semiconductor switches and diodes is maintained at 98.6% rated load efficiency. In addition, the performance evaluation has been performed by comparative analysis of the proposed converter with some prior art high power AC/DC converters. Efficiencies of the proposed and prior art high power topologies have been determined for different load conditions. The highest efficiency, power factor and lower THDI of the proposed converter topology complies with international standards.
Rocznik
Strony
793--807
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
autor
  • Department of Electrical Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
autor
  • Department of Electrical Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
autor
  • Department of Electrical Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
autor
  • Department of Electrical Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
Bibliografia
  • [1] M.R. Mohammadi and H. Farzanehfard, “New family of zero-voltage-transition PWM bidirectional converters with coupled inductors”, IEEE Trans. Ind. Electron. 59(2), 912–919 (2012).
  • [2] S. Dusmez and A. Khaligh, “A compact and integrated multifunctional power electronic interface for plug-in electric vehicles”, IEEE Trans. Power Electron. 28(12), 5690–5701 (2013).
  • [3] J. Lai, W. Yu, P. Sun, S. Leslie, B. Arnet, C. Smith, and A. Cogan, “A hybrid-switch-based soft-switching inverter for ultrahigh-efficiency traction motor drives”, IEEE Trans. Ind. Appl. 50(3), 1966–1973 (2014).
  • [4] P. Xuewei and A. K. Rathore, “Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles”, IEEE Trans. Ind. Electron. 61(5), 2307–2315 (2014).
  • [5] H.F. Xiao, X.P. Liu, and K. Lan, “Zero-voltage-transition full-bridge topologies for transformerless photovoltaic grid-connected inverter” IEEE Trans. Ind. Electron. 61(10), 5393– 5401 (2014).
  • [6] M. Ali, M. Mansoor, H. Tang and A. Rana, “Analysis of a seven-level asymmetrical hybrid multilevel converter for traction systems”, IET Power Electron. 10(14), 1878–1888 (2017).
  • [7] M.M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active PFC techniques for high-power applications-an overview”, IEEE Trans. Ind. Electron. 52(3), 701–708 (2005).
  • [8] S.S. Saha, B. Majumdar, and S.K. Biswas, “Improved active power factor correction circuit using a fully soft-switched boost converter”, IET Power Electron. 4(7), 835–841 (2011).
  • [9] S. Alexandrova, N. Nikolaev, O. Slita, A. Baev, and M. Goncharenko, “Practical implementation of high power and efficiency DC/DC full-bridge PWM boost converter”, International Conference on Information and Digital Technologies (IDT), pp. 29–35 (2017).
  • [10] M. Mohammadi, E. Adib, and M. R. Yazdani, “Family of soft-switching single-switch PWM converters with lossless passive snubber”, IEEE Trans. Ind. Electron. 62(6), 3473–3481 (2015).
  • [11] F. Engelkemeir, A. Gattozzi, G. Hallock, and R. Hebner, “An improved topology for high power soft-switched power converters”, Int. J. Electr. Power Energy Syst. 104(2), 575–582 (2019).
  • [12] P. KhademiAstaneh, J. Javidan, K. Valipour, and A. Akbarimajd, „A bidirectional high step-up multi-input DC/DC converter with soft switching”, Int. Trans. Electr. Energy Syst. 29(1), e2699 (2019).
  • [13] R.R. Khorasani, E. Adib, and H. Farzanehfard, “ZVT resonant core reset forward converter with a simple auxiliary circuit”, IEEE Trans. Ind. Electron. 65(1), 242–250 (2018).
  • [14] V.V.S.K. Bhajana, P. Drabek, and P.K. Aylapogu, „Design and implementation of a zero voltage transition bidirectional DC/DC converter for DC traction vehicles”, Int. Trans. Electr. Energy Syst. 29(5), p. e2842 (2019).
  • [15] B. Akin, “An improved ZVT/ZCT PWM DC/DC boost converter with increased efficiency”, IEEE Trans. Power Electron. 29(4), 1919–1926 (2014).
  • [16] M.R. Amini and H. Farzanehfard, “Novel family of pwm soft-single- switched DC/DC converters with coupled inductors”, IEEE Trans. Ind. Electron. 56(6), 2108–2114 (2009).
  • [17] R.T.H. Li and H.S.H. Chung, “A passive lossless snubber cell with minimum stress and wide soft-switching range”, IEEE Energy Conversion Congress and Exposition, pp. 685–692 (2009).
  • [18] M. Mohammadi, E. Adib, and H. Farzanehfard, “Lossless passive snubber for double ended flyback converter with passive clamp circuit”, IET Power Electron. 7(2), 245–250 (2014).
  • [19] K. Fujiwara and H. Nomura, “A novel lossless passive snubber for soft-switching boost-type converters”, IEEE Trans. Power Electron. 14(6), 1065–1069 (1999).
  • [20] R.T.H. Li, H.S. Chung, and A.K.T. Sung, “Passive lossless snubber for boost PFC with minimum voltage and current stress”, IEEE Trans. Power Electron. 25(3), 602–613 (2010).
  • [21] J. Yun, H. Choe, Y. Hwang, Y. Park, and B. Kang, “Improvement of power-conversion efficiency of a DC/DC boost converter using a passive snubber circuit”, IEEE Trans. Ind. Electron. 59(4), 1808–1814 (2012).
  • [22] M.D. Bellar, T.S. Wu, A. Tchamdjou, J. Mahdavi, and M. Ehsani, “A review of soft-switched DC/AC converters”, IEEE Trans. Ind. Applicat. 34, 847‒860 (1998).
  • [23] Y.C. Jung, H.L. Liu, G.C. Cho, and G.H. Cho, “Soft switching space vector PWM inverter using a new quasi-parallel resonant DC link”, IEEE Trans. Power Electron. 11, 503‒511 (1996).
  • [24] M. Turzynski, P.J. Chrzan, M. Kolincio, and S. Burkiewicz, “Quasi-resonant DC-link voltage inverter with enhanced zero-voltage switching control”, EPE’17 ECCE Europe, P.1-P.8. (2017).
  • [25] J. Kedarisetti and P. Mutschler, “A Motor-Friendly Quasi-Resonant DC-Link Inverter With Lossless Variable Zero-Voltage Duration”, IEEE Trans. Power Electron. 27(5), 2613‒2622 (2012).
  • [26] MR. Amini H. Farzanehfard, “Novel quasi-parallel resonant DC-link inverter with one auxiliary switch”, Proc IEEE international conference on power and energy, pp. 614–618 (2008).
  • [27] M.R. Yazdani, H. Farzanehfard, and J. Faiz, “EMI analysis and evaluation of an improved ZCT flyback converter”, IEEE Trans. Power Electron. 26(8), 2326–2334 (2011).
  • [28] D. Alexa, A. Sarbu, I.V. Pletea, C. Filote, and R. Chiper, “Variants of rectifiers with near sinusoidal input currents-a comparative analysis with the conventional diode rectifier”, IET Power Electron. 4(6), 632–641 (2011).
  • [29] R. Teichmann, M. Malinowski, and S. Bernet, “Evaluation of three-level rectifiers for low-voltage utility applications”, IEEE Trans. Ind. Electron. 52(2), 471–481 (2005).
  • [30] P.H. Feretti and F.L. Tofoli, “A DC/DC buck-boost converter based on the three-state switching cell”, 2017 Brazilian Power Electronics Conference (COBEP) , pp. 1–6 (2017).
  • [31] J.M. de Sousa, G.H.A. Bastos, R.P. Torrico-Bascope, and C.M.T. Cruz, “High voltage gain buck-boost DC/DC converter based on three-state switching cell”, 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6 (2015).
  • [32] A. Tomaszuk and A. Krupa, “High efficiency high step-up DC/DC converters-a review”, Bull. Pol. Ac.: Tech. 59(4), 475‒483 (2011).
  • [33] J. Kucka, D. Karwatzki, L. Baruschka, and A. Mertens, “Modular multilevel converter with magnetically coupled branch inductors”, IEEE Trans. Power Electron. 32(9), 6767–6777 (2017).
  • [34] T.B. Soeiro and J.W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers”, IEEE Trans. Ind. Electron. 60(9), 3589–3601 (2013).
  • [35] A.R. Izadinia and H.R. Karshenas, „Current shaping in a hybrid 12-pulse rectifier using a Vienna rectifier”, IEEE Trans. Power Electron. 33(2), 1135–1142 (2018).
  • [36] A. Domino, K. Zymmer, and M. Parchomiuk, “Comparative study between two-level and three-level high-power low-voltage AC/DC converters”, Bull. Pol. Ac.: Tech. 67(3), 583‒592 (2019).
  • [37] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for Vienna-type rectifiers considering the dc-link voltage balance”, IEEE Trans. Power Electron. 24(11), 2509–2522 (2009).
  • [38] J. Yang, J. Han, and T. Tang, “A cascaded multi-level pwm AC/DC converter with Vienna cell for HVDC”, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 308–312 (2014).
  • [39] J.P.M. Figueiredo, F.L. Tofoli, and B.L.A. Silva, “A review of single-phase PFC topologies based on the boost converter”, 2010 9th IEEE/IAS International Conference on Industry Applications-INDUSCON, pp. 1–6 (2010).
  • [40] R.L. Alves and I. Barbi, “Analysis and implementation of a hybrid high- power-factor three-phase unidirectional rectifier”, IEEE Trans. Power Electron. 24(3), 632–640 (2009).
  • [41] R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier”, IEEE Trans. Power Electron. 23(1), 96–106 (2008).
  • [42] F.A.B. Batista and I. Barbi, “Space vector modulation applied to three-phase three-switch two-level unidirectional PWM rectifier”, IEEE Trans. Power Electron. 22(6), 2245–2252 (2007).
  • [43] M.E. Villablanca, “Method and apparatus to reduce current distortion in line-commutated rectifiers”, IET Power Electron. 2(3), 287–296 (2009).
  • [44] V. Yaramasu, B. Wu, M. Rivera, and J. Rodriguez, “Predictive current control and DC-link capacitor voltages balancing for four-leg NPC inverters”, 2013 IEEE International Symposium on Industrial Electronics, pp. 1–6 (2013).
  • [45] K.M.J. Krishna and V. John, “Comparison of 3-phase, 3-level PFC rectifier circuits for high power applications”, 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–6 (2012).
  • [46] V. Ivakhno, V. Zamaruiev, and O. Ilina, “Estimation of semiconductor switching losses under hard switching using MATLAB/SIMULINK subsystem”, Electrical, Control and Communication Engineering 2 (5), (2013).
  • [47] P.S. Prakash, R. Kalpana, B. Singh, and G. Bhuvaneswari, “Design and implementation of sensorless voltage control of front-end rectifier for power quality improvement in telecom system”, IEEE Trans. Ind. Appl 54(3), 2438–2448 (2018).
  • [48] W. Song, Z. Dai, N. Xie, Y. Wang, and P. Wheeler, “Two methods for controlling three-time fundamental frequency neutral-point voltage oscillation in a hybrid Vienna rectifier”, IET Power Electron. 12(4), 932–943 (2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5405be3e-52d1-4eb4-b042-89aa3c57b52f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.