PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Poncelet’s porism in transformation group framework

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce a transformation group connected with Poncelet’s porism. Several open questions following from our considerations end the paper. The aim of this paper is to give a new approach to find an algebraic Fuss-type formula for all natural n>2. Developed method may be applied to investigations of Poncelet’s porism.
Słowa kluczowe
Twórcy
autor
  • Department of Applied Mathematics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
  • Department of Applied Mathematics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
  • Department of Applied Mathematics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
  • Institute of Mathematics, Maria Curie-Sklodowska University, M. Curie-Skłodowskiej 1 Sq., 20-031 Lublin, Poland
Bibliografia
  • 1. Berger M.: Geometry. Springer, New York 1994.
  • 2. Bos H.J.M., Kers C., Oort F., Raven D.W.: Poncelet’s Closure Theorem. Expos. Math. 5, 1987, 289–364.
  • 3. Cieślak W.: The Poncelet annuli. Beitr. Algebra Geom., 55, 2014, 301–309.
  • 4. Cieślak W., Martini H., Mozgawa W.: On the rotation index of bar billiards and Poncelet’s porism. Bull. Belg. Math. Soc. Simon Stevin 20, 2013, 287–300.
  • 5. Cieślak W., Martini H., Mozgawa W.: Rotation indices related to Poncelet’s closure theorem. To appear in Ann. Univ. Mariae Curie-Skłodowska.
  • 6. Jacobi C.G.J.: Über die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie. J. Reine Angew. Math 3, 1823, 376–387.
  • 7. Schoenberg I.J.: On Jacobi-Bertrand’s proof of a Theorem of Poncelet. Studies in Pure Mathematics to the Memory of Paul Turan, Basel, Switzerland, Birkhäuser, 1983, 623–627.
  • 8. Tabachnikov S.: Poncelet’s Theorem and Dual Billards. Enseign. Math. 39, 1993, 189–194.
  • 9. Tabachnikov S.: Geometry and Billiards. Amer. Math. Soc., Providence, RI, 2005.
  • 10. Weisstein E.W.: Poncelet’s Porism. In: Math World – A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5403c696-cdf7-4d66-9653-8b6b9cc669c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.