PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Differences in Lumbar Spine Load Due to Posture and Upper Limb External Load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the lumbar region of the spine is particularly predisposed to musculoskeletal disorders, the aim of this article was to assess lumbar spine load on the basis of an accurate model of this part of the body. The model was developed with the finite element method and the energy criterion for optimising muscle work. Computer calculations confirmed that stresses and compression forces in intervertebral discs increased with an increase in the load force and that they were significantly larger in the bent forwards posture than in the erect posture. This result clearly shows that lifting light objects and the erect posture are important elements in minimising spine load.
Rocznik
Strony
421--430
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
autor
  • Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology Warszawa, Poland
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology Warszawa, Poland
Bibliografia
  • 1.Corlett EN, Eklund AE, Johnson F. Method for measuring the load imposed on the back of a sitting person. Ergonomics. 1983;26:1064–76.
  • 2.Nachemson AL, Elfstrom G. Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises. Scand J Rehabil Med. 1970;1:1–40.
  • 3.Nachemson AL. Disc pressure measurements. Spine (Phila Pa 1976). 1981; 6:93–7.
  • 4.Adams MA, Dolan P. Recent advances in lumbar spinal mechanics and their clinical significance. Clin Biomech (Bristol, Avon). 1995;10(1):3–19.
  • 5.Caffier G, Kossler F, Steinberg U. Assessments of relationship between musculoskeletal disorder and working conditions by a combination of questionnaire, clinical investigation, and task analysis. In: Problems and Progress in Assessing Physical Load and Musculoskeletal Disorders. Bremerhaven, Germany: Wirtschaftsverlag NW Verlag fur neue Wissenschaft; 1996. p. 21–31.
  • 6.Pizatella TJ, Putz-Anderson V, Bobick TG, McGlothlin JD, Waters TR. Understanding and evaluating manual handling injuries: NIOSH research studies. Ergonomics. 1992;35(9):945–53.
  • 7.Kivi P, Mattila M. Analysis and improvement of work postures in the building industry: application of the computerized OWAS method. Appl Ergon. 1991;22:43–8.
  • 8.Chung KM, Lee I, Kee D, Kim SH. A postural workload evaluation system based on a macro-postural classification. Hum Factors Ergon Manuf. 2002;12(3):267–77.
  • 9.Kamińska J, Roman-Liu D, Zagrajek T, Borkowski P. Model kręgosłupa lędźwiowego człowieka [The model of human lumbar spine]. Acta Bioeng Biomech. 2004;6 Suppl 1:77–81.
  • 10.Kamińska J, Borkowski P, Roman-Liu D, Zagrajek T. Finite elements analysis of spine during computerised tasks. In: Proceedings of 11th International Conference on Human–Computer Interaction, vol. 1—Engineering Psychology, Health and Computer System Design [CD-ROM]. Mira Digital Publishing; 2005.
  • 11.Dietrich M, Kędzior K, Miller K, Zagrajek T. Statics and stability of human spine under working conditions. In: Marras WS, Karwowski W, Smith JL, Pacholski L, editors. The ergonomics of manual work. London, UK: Taylor & Francis; 1993. p. 147–50.
  • 12.Gardner-Morse M, Stokes IAF. Structural behaviour of human lumbar spinal motion segments. J Biomech. 2004;37:205–12.
  • 13.Arjmand N, Shirazi-Adl A. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J Biomech. 2006;39:510–21.
  • 14.Ivancic P, Cholewicki J, Radebold A. Effects of the abdominal belt on musclegenerated spinal stability and L4/L5 joint compression force. Ergonomics. 2002;45(7):501–13.
  • 15.Pankoke S, Hofmann J, Wolfel HP. Determination of vibration-related spinal loads by numerical simulation. Clin Biomech (Bristol, Avon). 2001;16 Suppl 1:S45–56.
  • 16.Guo LX, Zhang M, Li JL, Zhang YM, Wang ZW, Teo EC. Influence prediction of tissue injury on frequency variations of the lumbar spine under vibration. OMICS. 2009;13(6):521–6.
  • 17.Aubin CE, Petit Y, Stokes IA, Poulin F, Gardner-Morse M, Labelle H. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Engin. 2003;6(1):27–32.
  • 18.Dumas R, Lafage V, Lafon Y, Steib J-P, Mitton D, Skalli W. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin. 2005;8(5):331–7.
  • 19.Borkowski P, Wymysłowski P, Kędzior K, Krzesiński G, Zagrajek T. Modelowanie numeryczne połączenia kość–sztuczny dysk w odcinku lędźwiowym kręgosłupa [Numerical modelling of the artificial disc–bone fusion in lumbar spine]. Acta Bioeng Biomech. 2003;5, Suppl 1:48–53.
  • 20.Będziński R. Biomechanika inżynierska. Zagadnienia wybrane [Biomechanical engineering. Selected topics]. Wrocław, Poland: Oficyna Wydawnicza Politechniki Wrocławskiej; 1997.
  • 21.Panjabi M, White A III. Clinical Biomechanics of the spine. 2nd ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 1990.
  • 22.Ezquerro F, Simon A, Prado M, Perez A. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation. Med Eng Phys. 2004;26(1):11–22.
  • 23.Siemieński A. Soft saturation, an idea for load sharing between muscles. Application to the study of human locomotion. In: Cappozzo A, Marchetti M, Tosi V, editors. Biolocomotion: a century of research using moving pictures (International Society of Biomechanics Series). Rome Italy: Promograph; 1992. p. 293–304.
  • 24.Barbenel JC. The biomechanics of the temporomandibular joint: a theoretical study. J Biomech. 1972;5:251–6.
  • 25.Seireg A, Arvicar R. Biomechanical analysis of the musculoskeletal structure for medicine and sport. New York, NY, USA: Hemisphere; 1989.
  • 26.Pedotti A, Krishnan VV, Stark L. Optimization of muscle–force sequencing in human locomotion. Math Biosci. 1978;38:57–76.
  • 27.Siemieński A. Modelowanie i badanie współdziałania mięśni szkieletowych człowieka w warunkach dynamicznych na przykładzie kończyny dolnej [Modelling and analysis of human skeletal muscle co-operation under dynamic conditions, based on a lower limb]. Studia i monografie AWF we Wrocławiu. 1994;40:149–73.
  • 28.Zagrajek T. Modelowanie biomechaniczne układu kręgosłupa metodą elementów skończonych [Biomechanical modeling of the spine using finite element method (FEM)]. Prace naukowe Mechanika 140. Warszawa, Poland: Wydawnictwa Politechniki Warszawskiej; 1990.
  • 29.Kędzior K, Zagrajek T. A biomechanical model of the human musculoskeletal system. In: Morecki A, Waldron K, editors. Modelling and simulation of human and walking robot simulation. Wien, Austria: Springer; 1997. p. 125–152.
  • 30.Chaffin DB, Andersson GBJ, editors. Occupational biomechanics. New York, NY, USA: Wiley; 1991.
  • 31.Chaffin DB. Development of computerized human static strength simulation model for job design. Hum Factors Ergon Manuf. 1997;7(4):305–22.
  • 32.Marras WS, Granata KP, Davis KG, Alread GW, Jorgensen M. Spine loading and probability of low back disorder risk as a function of box location on a pallet. Hum Factors Ergon Manuf. 1997;7(4):323–36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53fefc2a-b679-49ba-bd37-72a032a3da0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.