PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytochemical composition and antioxidant activity of leaves extracts of Coleus forskohlii L. collected from Al-Leith Area, Saudi Arabia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: wild Coleus forskohlii L. is a well-known traditional medicine for the treatment of many diseases because of its high forskolin content and several diterpenes. Objective: this study aimed phytochemical screening, finding of total phenolic content (TPC), total flavonoid content (TFC) and antioxidation activity of Coleus forskohlii L. leavse extracts in Al-Leith area, Saudi Arabia. Materials and Methods: dry leaves of wild C. forskohlii L. were used. Four solvents from diverse polarity groups were tested on these leaves, which are ethanol, ethyl acetate, chloroform, and hexane. Moreover, obtained extracts were used in phytochemical analyzing, finding of total phenols, and antioxidation activity. Results: showed the presence of phenols, flavonoids, tannins, alkaloids, Proteins, carbohydrates, saponins, and glycosides in Coleus forskohlii L. leaves. The highest value of total phenolic content (TPC) was significantly (P < 0.001) in ethanol extract (280.5±2.33 mg GAE/gm. Also, the highest value of total flavonoid content (TFC) was in ethanol extract (141.4±1.30 mg QE /g). The antioxidation activity was significantly (P < 0.001) higher in ethanol extract (78.55±2.23%), followed by ethyl acetate extract (60.18±1.21%), chloroform extract (36.11±2.54%), and lowest value in hexane extract (20.71±0.59%). The study clearly indicated that the leaves extract of C. forskohlli L. collected from Al-Leith region- Saudi Arabia has properties to be useful in pharmacological and biological industries.
Rocznik
Strony
56--62
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wz.
Twórcy
  • Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia
Bibliografia
  • 1. Basoudan, N., Taie, H.A.A., Abu-Gabal, N.S., Al-Ghamdi S.N. & Shalaby N.M.M. (2019). Phytochemical study and antioxidant activity of some flowering plants growing wild in Al-Bahah in Saudi Arabia. Res. J. Pharm. Biol. Chem. Sci. 10(3), 498–514. DOI: 10.21474/IJAR01/10660.
  • 2. Soliman, M., Qari, S.H., Abu-Elsaoud, A., El-Esawi, M., Alhaithloul, H. & Elkelish, A. (2020). Rapid Green Synthesis of Silver Nanoparticles from Blue Gum Augment Growth and Performance of Maize, Fenugreek, and Onion by Modulating Plants Cellular Antioxidant Machinery and Genes Expression. Acta Physiol. Plant. 42, 148. DOI: 10.1007/s11738-020-03131-y.
  • 3. Singh, A.K., Arun, P., Shukla, J., Kumar, A., Nandi, M.K., Abduljaleel, Z., Al- Ghamdi, Saeed S. Alzahrani, Abdullah, R., Shahzad & Naiyer Shahzad, N. (2023). A Review on Traditional Anti-ulcer Medicinal Plants. Lett Drug Des Discoy. 20(4), 408–419. DOI: 10.2174/1570180819666220909090512.
  • 4. Khalid, S., Almalki, F. A., Hadda, T.B., Bader, A., Abu-Izneid, T., Berredjem, M., Elsharkawy, E. & Alqahtani, A.M. (2021). Medicinal applications of cannabinoids extracted from Cannabis sativa (L.): a new route in the fight against COVID-19?. Current pharmaceutical design, 27(13), 1564–1578. DOI: 10.2174/1381612826666201202125807.
  • 5. Badhepuri, M.K., Manokari, M., Raj, M.C., Jogam, P., Dey, A., Faisal, M. & Shekhawat, M.S. (2023). Meta-Topolin enhanced direct shoot organogenesis and regeneration from leaf explants of Coleus forskohlii (Willd.) Briq. Industrial Crops and Products, 197, 116584. DOI: 10.1016/j.indcrop.2023.116584.
  • 6. Kulkarni, C., Sharma, S., Porwal, K., Rajput, S., Sadhukhan, S., Singh, V., Akanksha S., Sanjana, B., Saroj, K., Aboli, G., Alka, R.P., Suriya P.S., Koneni V.S., Navin, K., Lal, H. & Naibedya, C. (2023). A standardized extract of Coleus forskohlii root protects rats from ovariectomy-induced loss of bone mass and strength, and impaired bone material by osteogenic and anti-resorptive mechanisms. Frontiers in Endocrinology 14. DOI: 10.3389/fendo.2023.1130003.
  • 7. Lunz, K. & Stappen, I. (2021). Back to the roots – an overview of the chemical composition and bioactivity of selected root-essential oils. Molecules, 26(11), 3155. DOI: 10.3390/molecules26113155.
  • 8. Sofowora, A., Ogunbodede, E. & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. AJTCAM, 10(5), 210–229. DOI: 10.4314/ajtcam.v10i5.2.
  • 9. Peltzer, D., Dreyer, E., & Polle, A. (2002). Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 40(2), 141–150. DOI: 10.1016/S0981-9428(01)01352-3.
  • 10. Romero-Martínez, B.S., Sommer, B., Solís-Chagoyán, H., Calixto, E., Aquino-Gálvez, A., Jaimez, R., Juan, C., Gomez-V., Georgina, G., Edgar, F. & Luis, M. (2023). Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int. J. Mol. Sci. 24(9), 7879. DOI: 10.3390/ijms24097879.
  • 11. Balasubramanian, V., Suresh, J., Srinivasan, R., Prabhu, M., Manikandan, E. & Nandha, V.G. (2020). Evaluation of soil characteristics and yield variation of coleus (Coleus forskohlii) in different agro climatic zones of Tamil Nadu. Int. J. Conserv. Sci. 8(4), 2841–5. DOI: 10.22271/chemi.2020.v8.i4ah.10076.
  • 12. Abd-Allah, H., AbdAlhady, M.M., Abdelall, M.N., Mohamedy, S.N., Alharbi, W.D. & Bahathiq, A.O. (2017). Hormonal and immunological responses to Coleus forskohlii treatment in female rats with experimentally polycystic ovaries syndrome. Zagazig Veter. J. 45(1), 74–81. DOI: 10.21608/zvjz.2017.7689.
  • 13. Pateraki, I., Andersen-Ranberg, J., Jensen, N.B., Wubshet, S.G., Heskes, A.M., Forman, V., Björn, H., Britta, H., Mohammed, S., Carl, E., Dan, S., Jørgen H., Birger, L. & Björn, H. (2017). Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife, 6. DOI: 10.7554/eLife.23001.
  • 14. Krishna, G., Sairam, Reddy, P., Anoop, Nair, N., Ramteke, P.W. & Bhattacharya, P. (2010). In vitro direct shoot regeneration from proximal, middle, and distal.
  • 15. segment of Coleus forskohlii leaf explants. Physiol. Mol. Biol. Plants, 16, 195–200. DOI: 10.1007/s12298-010-0021-y.
  • 16. Kotia, A., Adhikari, B.S., Rawat, G.S. & Pasha, M. (2007), Status and Distribution of Coleus barbatus Benth. In Tehri Garhwal District, Uttarakhand. J. Biodivers Endanger Species, 2, 127. DOI: 10.4172/2332-2543.1000127.
  • 17. Kharwar, R.N., Sharma, V.K., Mishra, A., Kumar, J., Singh, D.K., Verma, S.K., Surendra, K., Anuj, K., Nutan, K., Bharadwaj, R. & Souvik, K. (2020). Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Medica, 86(13/14), 906–940. DOI: 10.1055/a-1107-9370.
  • 18. Srivastava, S., Misra, A., Mishra, P., Shukla, P., Kumar, M., Sundaresan, V., Kuldeep, S., Pawan, K. & Ajay, K. (2017). Molecular and chemotypic variability of forskolin in Coleus forskohlii Briq., a high value industrial crop collected from Western Himalayas (India). Rsc. Advances, 7(15), 8843–8851. DOI: 10.1039/C6RA26190F.
  • 19. Sivakumar, P., Bavithra, V.S., Ashokkumar, K., Deepadharsini, R., Selvaraj, K.V. & Gopal, M.R. (2021). Comprehensive review on phytochemistry and in vitro biotechnology of Coleus forskohlii. J. pharmacogn. phytochem, 10(1), 448–453. DOI:10.22271/phyto.2021.v10. i1g.13346.
  • 20. Godard, M.P., Johnson, B.A. & Richmond, S.R. (2005). Body composition and hormonal adaptations associated with forskolin consumption in overweight and obese men. Obesity research, 13(8), 1335–1343. DOI: 10.1038/oby.2005.162.
  • 21. Luo, C., Zou, L., Sun, H., Peng, J., Gao, C., Bao, L., Renpeng, J., Yue, J. & Shuangyong S. (2020). A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Frontiers in pharmacology, 11, 153. DOI: 10.3389/fphar.2020.00153.
  • 22. Al-Ghamdi, A.Y., Fadlelmula, A.A., Abdalla, M.O. & Zabin, S.A. (2021). Phytochemical Screening, Chemical Composition, Antimicrobial Activity and in Silico Investigation of the Essential Oil of Coleus forskohlii L. Collected from the Southwestern Region of Saudi Arabia. J. Essent. Oil-Bear. Plants, 24(1), 120–133. DOI: 10.1080/0972060X.2021.1901613.
  • 23. Kanyal, J., Prakash, O., Kumar, R., Rawat, D.S., Srivastava, R.M., Singh, R.P. & Pant, A.K. (2021). Study on comparative chemical composition and biological activities in the essential oils from different parts of Coleus barbatus (Andrews) Bent. ex G. Don. J. Essent. Oil-Bear. Plants, 24(4), 808–825. DOI: 10.1080/0972060X.2021.1958701.
  • 24. Bantan, R.A., Khawfany, AA., Basaham, A.S., & Gheith, A.M. (2020). Geochemical Characterization of Al-Lith Coastal Sediments, Red Sea, Saudi Arabia. Arab. J. Sci. Eng. 45, 291–306. DOI: 10.1007/s13369-019-04161-6.
  • 25. Adetunji, L.R., Adekunle, A., Orsat, V. & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239–250. DOI: 10.1016/j.foodhyd.2016.08.015.
  • 26. Morsy, N. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry, 13(1), 7–21. DOI 10.3233/MGC-130117.
  • 27. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., & Lightfoot, D.A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. DOI: 10.3390/plants6040042.
  • 28. Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P. (2022). Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: a review. Plants, 11(15), 2011. DOI: 10.3390/plants11152011.
  • 29. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C. & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10), 2041. DOI: 10.3390/microorganisms9102041.
  • 30. Oboh, G. & Akindahunsi, A.A. (2004). Change in the ascorbic acid, total phenol and antioxidant activity of sun-dried commonly consumed green leafy vegetables in Nigeria. Nutrition and Health, 18(1), 29–36. DOI: 10.1177/026010600401800103.
  • 31. Akbay, P., Basaran, A.A., Undeger, U. & Basaran, N. (2003). In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytotherapy Research, 17(1), 34–37. DOI: 10.1002/ptr.1068.
  • 32. Brand-williams W, Cuvelier, M.E. & Berset, C. Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft and Technologie, 1995, 28(1); 25–30. DOI: 10.1016/S0023-6438(95)80008-5.Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • 33. Złotek, U., Mikulska, S., Nagajek, M. & Świeca, M. (2016). The effect of different solvents and number of extraction steps on the polyphenol content and anti-oxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J Biol. Sci., 23(5), 628–633. DOI: 10.1016/j. sjbs.2015.08.002.
  • 34. Khatun, S., Chatterjee, N.C. & Cakilcioglu, U. (2011). Antioxidant activity of the medicinal plant Coleus forskohlii Briq. Afr. J. Biotechnol, 10(13), 2530–2535. DOI: 10.5897/AJB10.2526.
  • 35. Jamwal, V.L, Gulfam, S, Manhas, R.S, Qayum, A, Kapoor, N, Chouhan, R, Singh, S.K., Chaubey, A. & Gandhi, S.G. (2019). Isolation, identification, and bioactive potential of bacterial endophytes from Coleus. IJBB, 56(5), 392–398. DOI: 10.56042/ijbb.v56i5.28246.
  • 36. Al-Ghamdi, A.Y. (2021). Phytochemical screening and antimicrobial activity of stem extract of Coleus forskohlii L. collected from Al-Baha Area, Saudi Arabia. GSCBPS, 16(2), 078–086. DOI: 10.30574/gscbps.2021.16.2.0114.
  • 37. Almulaiky, Y.Q., Kuerban, A., Aqlan, F., Alzahrani, S.A., Baeshen, M.N., Afifi, Ammar A., Al-Shawafi, W. & Alkhaled, M. (2017). In vitro antiglycation, antioxidant properties of Coleus forskohlii’’Balady’’leaves and stem and their antioxidant enzyme activities. Annu. Res. Rev., 1–11. DOI: 10.9734/ARRB/2017/37619.
  • 38. Velázquez, L., Quiñones, J., Díaz, R., Pateiro, M., Lorenzo, J. M. & Sepúlveda, N. (2021). Natural antioxidants from endemic leaves in the elaboration of processed meat products: Current status. Antioxidants, 10(9), 1396. DOI: 10.3390/antiox10091396.
  • 39. Naveed, M., Batool, H., Rehman, S.U., Javed, A., Makhdoom, S.I., Aziz, T., & Alhomrani, M. (2022). Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract. Processes, 10(8), 1521. DOI:10.3390/pr10081521.
  • 40. Sameeh, M.Y., Mohamed, A.A. & Elazzazy, A.M. (2016). Polyphenolic contents and antimicrobial activity of different extracts of Padina boryana Thivy and Enteromorpha sp marine algae. J. Appl. Pharm. Sci. 6(9), 087–092. DOI: 10.7324/JAPS.2016.60913.
  • 41. Naveed, M., Bukhari, B., Aziz, T., Zaib, S, Mansoor, M.A, Khan, A.A, Shahzad, M., Dablool, A.S., Alruways, M.W., Almalki, A.A., Alamri, A.S. & Alhomrani, M. (2022). Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules. 30, 27(13), 4226. DOI: 10.3390/molecules27134226.
  • 42. Naveed, M., Batool, H., Rehman, S.u., Javed, A.; Makhdoom, S.I., Aziz, T., Mohamed, A.A., Sameeh, M.Y., Alruways, M.W., Dablool, A.S., Almalki, A.A., Alamri, A.S., Alhomrani, M. Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes, (2022). 1521. DOI: 10.3390/pr10081521.
  • 43. Hamouda, A.F., Sameeh, M.Y. & Shrourou, R.M. (2016). Effect of avocado (persea americana), cabbage (brassica oleracea) and ginger (zingiber officinale) on rat liver and thyroid injuries induced by CCl4 (carbon tetrachloride). J. Pharm. Pharmacol, 4(3), 108–118. DOI: 10.17265/2328-2150/2016.03.002.
  • 44. Mohamed, A.A., Sameeh, M.Y. & El-Beltagi, H.S. (2022). Preparation of Seaweed Nanopowder Particles Using Planetary Ball Milling and Their Effects on Some Secondary Metabolites in Date Palm (Phoenix dactylifera L.) Seedlings. Life, 13(1), 39. DOI: 10.3390/life13010039.
  • 45. Hayat, P., Khan, I., Rehman, A., Jamil, T., Hayat, A., Rehman, M.U. & Aziz, T. (2023). Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules, 28(2), 637. DOI: 10.3390/molecules28020637.
  • 46. Laaroussi, H., Aouniti, A., Mokhtari, O., Hafez, B., Sheikh, R.A., Sameeh, M.Y., Manal M., K., Suliman, A., Alderhami, A., Elhenawy, Mohamed, E., 1,Ilyesse, R., Chaouki, B., Belkheir, H., Taibi, B. & Hicham, E., (2022). Experimental and Theoretical Investigations of Argania spinosa’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl. Appl. Sci., 12(24), 12641. DOI: 10.3390/app122412641.
  • 47. Mohamed, A.A., Ali, S.I., Sameeh, M.Y. & El-Razik, T.M.A. (2016). Effect of solvents extraction on HPLC profile of phenolic compounds, antioxidant, and anticoagulant properties of Origanum vulgare. Research Journal of Pharmacy and Technology, 9(11), 2009-2016. DOI: 10.5958/0974- 360X.2016.00410.8.
  • 48. Sumaira, S., Shazia, K., Jahangir, K., Razia, B., Abid, S., Tariq, A., Majid, A., Abdulhakeem, S.A., Manal, Y.S. & Faten, Z. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Res. Int, 169, 112940. DOI: 10.1016/j.foodres.2023.112940.
  • 49. Khan, J., Khurshid, S., Sarwar, A., Aziz, T., Naveed, M., Ali, U., Makhdoom, S.I., Nadeem, A.A., Khan, A.A, Sameeh, M.Y., Alharbi, A.A., Filimban, F.Z., Rusu, A.V., Göksen, G. & Trif, M. (2022). Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles – A Sustainable Approach towards Food Safety. Sustainability, 14, 14255. DOI: 10.1016/j. foodres.2023.112940.
  • 50. Saleem, K., Aziz, T., Ali Khan, A., Muhammad, A., Ur Rahman, S., Alharbi, M., Alshammari, A.F. & Alasmari, A. (2023). Evaluating the in-vivo effects of olive oil, soya bean oil, and vitamins against oxidized ghee toxicity. Acta Biochim. Pol. 6549.
  • 51. Sameeh, M.Y., Khowdiary, M.M., Nassar, H.S., Abdelall, M.M., Amer, H.H., Hamed, A. & Elhenawy, A.A. (2022). Thiazolidinedione Derivatives: In Silico, In Vitro, In Vivo, Antioxidant and Anti-Diabetic Evaluation. Molecules, 27(3), 830. DOI: 10.3390/molecules27030830.
  • 52. Sameeh, M.Y., Khowdiary, M.M., Nassar, H.S., Abdelall, M.M., Alderhami, S.A. & Elhenawy, A.A. (2022). Discovery potent of thiazolidinedione derivatives as antioxidant, α-amylase inhibitor, and antidiabetic agent. Biomedicines, 10(1), 24. DOI: 10.3390/biomedicines10010024.
  • 53. Benish, R., Sobia, A., Naureen, Z., Sohail, A., Abid, S., Tariq, A., Metab, A., Abdulrahman, A. & Abdullah, FA. (2023). Evaluating the influence of Aloe barbadensis extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats through in vivo and in silico approaches. Act Biochmica Polonica 70(2), 425–433. DOI: 10.18388/abp.2020_6705.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53fbc860-3393-48d7-a856-4fb1815fdb2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.