PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analytical modeling of I-beam as a sandwich structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is devoted to an analytical model of I-beam, with consideration of the shear effect. The model is based on the sandwich beam theory. The field displacements and strains are formulated with consideration of a nonlinear hypothesis of flat cross-section deformation of the beam. The governing differential equations for the I-beam are obtained based on the principle of stationary total potential energy. The shear effect of the beam is illustrated for the threepoint bending case. The analytical solution is compared to FEM numerical calculation. The results of the analysis are presented in Tables and Figures.
Rocznik
Strony
357--373
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Rail Vehicles “TABOR” Warszawska 181, 61-055 Poznan, Poland
autor
  • Institute of Rail Vehicles “TABOR” Warszawska 181, 61-055 Poznan, Poland
Bibliografia
  • 1. Gere J.M., Timoshenko S.P., Mechanics of materials, PWS-KENT Pub. Comp., Boston 1984.
  • 2. Wang C.M., Reddy J.N., Lee K.H., Shear deformable beams and plates, Elsevier, Amsterdam, Lausanne, New York, Oxford, Tokyo 2000.
  • 3. Hutchinson J.R., Shear coefficients for Timoshenko beam theory, ASME Journal of Applied Mechanics, 68(1): 87–92, 2001.
  • 4. Song O., Librescu L., Jeong N-H., Static response of thin-walled composite I-beams loaded at their free-end cross-section: Analytical Solution, Composite Structures, 52(1): 55–65, 2001.
  • 5. Jung S.N., Lee J-Y., Closed form analysis of thin-walled composite I-Beams considering non-classical effect, Composite Structures, 60(1): 9–17, 2003.
  • 6. El Fatmi R., Non-uniform warping including the effects of torsion and shear forces, Part I: A general beam theory, International Journal of Solids and Structures, 44(18–19): 5912–5929, 2007.
  • 7. Romanoff J., Varsta P., Bending response of web-core sandwich plates, Composite Structures, 81(2): 292–302, 2007.
  • 8. Blaauwendraad J., Shear in structural stability: On the Engesser-Haringx discord, ASME Journal of Applied Mechanics, 77(3): 031005, 2010.
  • 9. Dong S.B., Alpdogan C., Taciroglu E., Much ado about shear correction factors in Timoshenko beam theory, International Journal of Solids and Structures, 47(13): 1651– 1665, 2010.
  • 10. Shi G., Voyiadjis G.Z., A sixth-order theory of shear deformable beams with variational consistent boundary conditions, ASME Journal of Applied Mechanics, 78(2): 021019, 2010.
  • 11. Beck A.T., da Silva Jr C.R.A., Timoshenko Versus Euler Beam Theory: Pitfalls of a deterministic approach, Structural Safety, 33(1): 19–25, 2011.
  • 12. Kim N-I., Shear deformable doubly- and mono-symmetric composite I-beams, International Journal of Mechanical Sciences, 53(1): 31–41, 2011.
  • 13. Magnucka-Blandzi E., Dynamic stability and static stress state of a sandwich beam with metal foam core using three modified Timoshenko hypothesis, Mechanics of Advanced Materials and Structures, 18(2): 147–158, 2011.
  • 14. Magnucka-Blandzi E., Mathematical modelling of a rectangular sandwich plate with a metal foam core, Journal of Theoretical and Applied Mechanics, 49(2): 439–455, 2011.
  • 15. Shi G., Wang X., A constraint on the consistence of transverse shear strain energy in the higher-order shear deformation theories of elastic plates, ASME Journal of Applied Mechanics, 80(4): 044501, 2013.
  • 16. Li S., Wan Z., Wang X., Homogenized and classical expressions for static bending solutions for functionally graded material Levinson beams, Applied Mathematics and Mechanics – Engl. Ed., 36(7): 895–910, 2015.
  • 17. Magnucka-Blandzi E., Magnucki K., Wittenbeck L., Mathematical modeling of shearing effect for sandwich beams with sinusoidal corrugated cores, Applied Mathematical Modelling, 39(9): 2796–2808, 2015.
  • 18. Urbański A., Analysis of a beam cross-section under coupled actions including transversal shear, International Journal of Solids and Structures, 71: 291–307, 2015.
  • 19. Magnucki K., Malinowski M., Magnucka-Blandzi E., Lewinski J., Three-point bending of a short beam with symmetrically varying mechanical properties, Composite Structures, 179: 552–557, 2017.
  • 20. Schulz M., Beam element with a 3D response for shear effects, Journal of Engineering Mechanics, 144(1): 04017149, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53f85871-6a79-498f-ae0b-3c7f316b7fc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.