PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Aging Factors on the Properties of Aerogels with Different Degrees of Granulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ czynników starzeniowych na właściwości aerożeli o zróżnicowanym stopniu uziarnienia
Języki publikacji
EN
Abstrakty
EN
Aerogels are distinguished by their low density and thermal conductivity, which predisposes them for application in materials against extremely low or high temperature. Aerogel resistance to aging factors such as moisture, high temperature and thermal radiation was studied. Aerogel resistance to moisture absorption was studied by the weight method, at a relative humidity of 65% and 95%. For aerogels exposed to heat (at 260 °C) and thermal radiation (heat flux density 20 kW/m2), structural and textural characteristics (specific surface area, pore volume, pore size distribution) were determined. It was found that in an environment characterised by 95% humidity, the moisture weight absorbed was similar for all aerogels and amounted to less than 1%, corresponding to low moisture absorption capacity. The most significant changes in specific surface area were recorded for aerogels in powder form, where the value of this parameter after exposure to high temperature increased by 13% compared to the reference sample. An increase in the specific surface area can effect a reduction in thermal conductivity; thus this change is positive in character in the context of application to clothing designed against thermal factors.
PL
Aerożele wyróżniają się małą gęstością i przewodnością cieplną, co predysponuje je do zastosowania w materiałach chroniących przed skrajnie niską lub wysoką temperaturą. W pracy zbadano odporność aerożeli na czynniki starzeniowe takie jak: wilgoć, wysoka temperatura i promieniowanie cieplne. Odporność aerożeli na wchłanianie wilgoci badano metodą wagową, przy wilgotności względnej 65% i 95%. Dla aerożeli poddanych ekspozycji na ciepło (w temp. 260 °C) i promieniowanie cieplne (przy gęstości strumienia ciepła 20 kW/m2) wyznaczono cechy strukturalne i teksturalne (powierzchnia właściwa, objętość porów, rozkład wielkości porów). Stwierdzono, że w środowisku charakteryzującym się 95% wilgotnością, zdolność pochłaniania wilgoci była zbliżona dla wszystkich aerożeli i wynosiła poniżej 1%. Największe zmiany powierzchni właściwej odnotowano w przypadku aerożelu w postaci proszku, gdzie wartość tego parametru po działaniu wysokiej temperatury wzrosła o 13% względem próbki odniesienia. Stwierdzono, że zwiększenie powierzchni właściwej może wpływać na zmniejszenie przewodności cieplnej, a więc zmiana ta ma pozytywny charakter w kontekście aplikacji do odzieży chroniącej przed czynnikami gorącymi.
Rocznik
Strony
50--58
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
  • Department of Personal Protective Equipment, Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Bibliografia
  • 1. Anderson AM, Carroll MK. Hydrophobic silica aerogels: review of synthesis, properties and applications. In: Aegerter M, Leventis N, Koebel M, editors. Aerogels Handbook. New York: Springer, 2011; 3: 71-73.
  • 2. Dorcheh Soleimani A, Abbasi MH. Silica aerogel: synthesis, properties and characterization. J Mater Process Tech. 2008; 199(1–3): 10-26.
  • 3. Du A, Zhou B, Zhang Z, Shen J. A specjal material or a new state of matter: A review and reconsideration of the aerogel. Materials 2013; 6(3): 941-968.
  • 4. Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev. 2002; 102(11): 4243−4265.
  • 5. Thapliyal PC, Singh K, (2014). Aerogels as promising thermal insulating materials: an overview. J Mater. 2014; article ID 127049.
  • 6. Stepanian CJ, inventor; Highly flexible aerogel insulated textile-like blankets. United States patent 20070154698. 2007 Jan 2.
  • 7. Universal insulation panels for apparel [hompage on the Internet]. c2018 [updated 2018 Feb 10; cited 2018 Mar 9]. Available from http://www.aerotherminsulation.com/products-applications/universal-insulationpanels-apparel
  • 8. https://gearjunkie.com/primaloft-gold-aerogel-insulation [accessed 2018 Mar 9].
  • 9. Naeem J, Mazari AA, Havelka A. Review: Radiation Heat Transfer through Fire Fighter Protective Clothing. FIBRES & TEXTILES in Eastern Europe 2017; 25, 4(124): 65-74. DOI: 10.5604/01.3001.0010.2665
  • 10. Shaid A, Furgusson M, Wang L. Thermophysiological comfort analysis of aerogel, nanoparticle incorporated fabric for fire fighter’s protective clothing. Chemical and Materials Engineering 2014; 2(2): 37-43.
  • 11. Zrim PK, Mekjavic IB, Rijavec T. Properties of laminated silica aerogel fibrous matting composites for footwear applications. Text Res J. 2015; 86(10): 1063-1073.
  • 12. Venkataraman M, Mishra R, Wiener J, Štěpánková M, Arumugam VK, Militky J. Effect of laser irradiation on kevlar fabric treated with nanoporous aerogel. Paper presented at: NANOCON 2015. 7th International Conference on Nanomaterials – Research and Application; 2015 Oct 14-16; Brno, Czech Republic (electronic version)
  • 13. Jiang Y, Zhang L, Xu H, Zhong Y, Mao Z. Preparation and characterization of thermal protective aluminum hydroxide aerogel/PSA fabric composites. J Sol-Gel Sci Technol. 2017; 82(2): 370-379.
  • 14. Ghane M, Sarlak H. Study on Radiant Heat Flux Transfer Through Aluminised Multi-Layer Fabric at Low Level Thermal Radiation. FIBRES & TEXTILES in Eastern Europe 2016; 24, 4(118): 80-83. DOI: 10.5604/12303666.1201135
  • 15. Lakos A. Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: measurements, calculations, simulations. Energ Build. 2017; 139: 506-516.
  • 16. Ihara T, Jelle BP, Gaoa T, Gustavsen A. Aerogel granule aging driven by moisture and solar radiation. Energy Build. 2015; 103: 238–248.
  • 17. Whetsell J, Saha MC, Altan C, Liang J, Pan Ch. Investigation of hygrothermal effects on the thermal conductivity characteristics of insulation materials. Paper presented at: 2015 Annual ASHRAE Conference; 2015 Jun 27- Jul 1; Atlanta, Georgia (electronic version).
  • 18. Rao AV, Haranath D. Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Micropor Mesopor Mat. 1999; 30(2–3): 267–273.
  • 19. Miner MR, Hosticka B, Norris PM. The effects of ambient humidity on the mechanical properties and surface chemistry of hygroscopic silica aerogel. J Non-Cryst Solids. 2004; 350: 285-289.
  • 20. Wagh PB, Ingale SV. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels. Ceram Int. 2002; 28(1): 43-50.
  • 21. Rao VA, Kulkarni MM, Amalnerkar DP, Seth T. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl Surf Sci. 2003; 206(1-4): 262-270.
  • 22. Bellunatio T, Calvi M, Coluzza C. Study of ageing effects in aerogel. Nucl Instr Meth Phys Res. 2004; 527: 319-328.
  • 23. Tillotson TM, Foster KG, Reynolds JG. Fluorine-induced hydrophobicity in silica aerogels. J Non-Cryst Solids. 2004; 350: 202–208.
  • 24. Gurav JL, Rao AV, Nadargi DY. Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure. J Sol-Gel Sci Technol. 2009; 50(3): 275-280.
  • 25. Shi F, Wang L, Liu J, Zeng M. Effect of heat treatment on silica aerogels prepared via ambient drying. J Mater Sci Technol. 2007; 23(3): 402-406. 2
  • 26. Sarawade PB, Kim J-K, Hilonga A, Viet Quang D, Jeon SJ, Kim HT. Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: effect of heat-treatment. J Non-Crys Solids. 2011; 357: 2156-2162.
  • 27. Cui S, Liu Y, Fan M et al. Temperature dependent microstructure of MTES modified hydrophobic silica aerogels. Mater Lett. 2011; 65(4): 606-609.
  • 28. Yang J, Liu J, Sui X. Property changes of SiO2 aerogel on insulation performance under different time and high temperature condition. Key Eng Mater. 2014; 602-603: 349-352.
  • 29. Huang D, Guo Ch, Zhang M, Shi L. Characteristics of nanoporous silica aerogel under high temperature from 950°C to 1200°C. Mater Design. 2017; 129(5): 82-90.
  • 30. Li Z, Cheng X, Shi L et al. Flammability and oxidation kinetics of hydrophobic silica aerogels. J Hazard Mater. 2016; 320: 350–358.
  • 31. Song H, Yang H, Chen X. Facile synthesis of highly porous silica aerogel granules and its burning behavior under radiation. J Sol-Gel Sci Technol. 2017; 82(2): 407-416.
  • 32. Rouquerolt J, Avnir D, Fairbridge CW, et al. Recommendations for the characterization of porous solids. Pure Appl Chem. 1994; 66(8): 1739–1758.
  • 33. Dorcheh AS, Abbasi MH. Silica aerogel; synthesis, properties and characterization. J Mater Process Technol. 2008; 199(1): 10–26.
  • 34. Hüsing N, Schubert U. Aerogels-airy materials: chemistry, structure, and properties. Angew Chemie Int Ed. 1998; 37(1/2): 22–45.
  • 35. Kistler SS, Caldwell AG. Thermal conductivity of silica aerogel. Ind Eng Chem. 1934; 26(6): 658–62.
  • 36. Safety Data Sheet for Aerogels: ENOVA® IC3100, ENOVA® IC3110 and Lumira® LA1000 [homepage on the Internet]. c2018 [update 2018 Feb 12; cited 2018 Mar 15]. Available from http://www.cabotcorp.com/solutions/products-plus/aerogel/particles
  • 37. PN-80/P-04635. Test methods for textiles. Determination of Hygroscopicity. [in Polish].
  • 38. PN-78/C-83602. Extinguishing agents. Extinguishing powders. Determination of hygroscopicity.” [in Polish].
  • 39. ISO 17493: 2016. Clothing and equipment for protection against heat. Test method for convective heat resistance using a hot air circulating oven.
  • 40. EN ISO 6942: 2002. Protective clothing. Protection against heat and fire. Method of test: Evaluation of materials and assemblies when exposed to a source of radiant heat.
  • 41. EN ISO 11612: 2015-11. Protective clothing. Clothing to protect against heat and flame. Minimum performance requirements.
  • 42. Klobes P, Meyer K, Munro RG. NIST Recommended practice guide: porosity and specific surface area measurements for solid materials. Washington: U.S. Government Printing Office; 2006.
  • 43. Thommes M, Kaneko K, Neimark A V., Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015; 87(9-10): 1051-69.
  • 44. Monson PA. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Micropor Mesopor Mat. 2012; 160: 47–66.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53f438dd-d27c-471f-bdcb-81df87052c19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.