PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength Analysis Aspects of Psyllium/Thermoplastic Starch Films under Impact Loading Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tensile test under quasi-static loads conditions is usually used to determine the mechanical strength of thermoplastic starch films. This kind of test does not fully illustrate the load conditions for packaging films, which, under the conditions of use, are succumb to dynamic loads. Thus, the aim of the study was to present the possibilities of using a patented soft tissues measurement testing station to analyze the mechanical strength of thermoplastic starch (TPS) films under impact loading conditions. Two groups of film specimens containing the addition of psyllium husks (TPS/PH) and psyllium flour (TPS/PF) were used for the measurements. The casting method was applied, and glycerol was used as a plasticizer. Microstructure of the specimen surface was analyzed by stereoscopic microscopy. Specimens with the addition of psyllium flour had a more uniform microstructure. The maximum breaking forces obtained during impact tests for these films were 5 times higher than specimens containing psyllium seed husk. The same behaviour was found with respect to stresses with average values of 48.6 MPa for TPS/PF and 20.2 MPa for TPS/PH. Moreover, research confirms usefulness of patented soft tissues measurement testing station to analyse the mechanical strength of thermoplastic starch films.
Twórcy
  • Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin
  • Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin
autor
  • Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin
  • Department of Mechanical Engineering, CEMMPRE, Portugal
Bibliografia
  • 1. Tóth A., Halász K. Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour. Food Packaging. Shelf Life 2019; 20: 100299.
  • 2. Plastics in Europe. The report of Supreme Audit Office in Poland. Available online: https://www.nik.gov.pl/aktualnosci/odpady-z-tworzyw-sztucznych-w-europie-raport.html (accessed on 2 Day October 2022).
  • 3. Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F. A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health 2020; 17(4):1212.
  • 4. Anik A.H., Hossain S., Alam M., Sultan M.B., Hasnine T., Rahman M. Microplastics pollution: A comprehensive review on the sources, fates, effects, and potential remediation. Environmental Nanotechnology, Monitoring & Management 2021: 6: 100530.
  • 5. EU Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment (Text with EEA Relevance) PE/11/2019/REV/.Available online: http://data.europa.eu/eli/dir/2019/904/oj (accessed on 2 Day March 2022).
  • 6. Single-Use Plastics: New EU Rules to Reduce Marine Litter. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_18_3909 (accessed on 19 Day May 2022).
  • 7. Khan B., Niazi M.B.K., Samin G., Jahan Z. Thermoplastic starch: A possible biodegradable food packaging material – a review. Journal of Food Process Engineering 2016; 40: e12447.
  • 8. Stropek Z., Gołacki K., Kołodziej P., Gładyszewska B., Samociuk W., Rejak A. Effect of polyvinyl alcohol and keratin on stress relaxation course in thermoplastic starch. Przemysł Chemiczny 2014; 93: 364–367.
  • 9. Krystyjan M., Khachatryan G., Khachatryan K., Konieczna-Molenda A., Grzesiakowska A., Kuchta-Gładysz M., Kawecka A., Grzebieniarz W., Nowak N. The functional and application possibilities of starch/chitosan polymer composites modified by graphene oxide. International Journal of Molecular Sciences 2022; 23: 5956.
  • 10. Kwaśniewska A., Chocyk D., Gładyszewski G., Borc J., Świetlicki M., Gładyszewska B. The inflence of kaolin clay on the mechanical properties and structure of thermoplastic starch films. Polymers 2020; 12(1): 73.
  • 11. Ahmadi R., Kalbasi-Ashtari A., Oromiehie A., Yarmand M.-S., Jahandideh F. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). Journal of Food Engineering 2012; 109: 745–751.
  • 12. Patil B.S., Mastiholimath V.S., Kulkarni A.R. Development and evaluation of psyllium seed husk polysaccharide based wound dressing films. Oriental Pharmacy and Experimental Medicine 2011; 11: 123–129.
  • 13. Beer-Lech K, Skic A, Skic K, Stropek Z, Arczewska M. Effect of psyllium husk addition on the structural and physical properties of biodegradable thermoplastic starch film. Materials 2022; 15(13): 4459.
  • 14. Hussain M.A., Muhammad G., Jantan I., Bukhari, S.N.A. Psyllium arabinoxylan: A versatile biomaterial for potential medicinal and pharmaceutical applications. Polymer Reviews 2015; 56: 1–30.
  • 15. Debeaufort F., Martin-Polo M., Voilley A. Polarity homogeneity and structure affect water vapor permeability of model edible films. Journal of Food Science 1993; 58: 426–429.
  • 16. Gutiérrez, T.J.; Álvarez, V. Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocolloids 2018; 77, 407–420.
  • 17. Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure – A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate. Polymers; 2016, 139: 35–42
  • 18. Nikonenko, N.A.; Buslov, D.K.; Sushko, N.I.; Zhbankov, R.G. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra deconvolution. Biopolymers 2000; 57: 257–262.
  • 19. Chen Y.,. Shull K.R., Controlling the properties of thermoplastic starch films with hydrogen bonding plasticizers. Carbohydrate Polymer Technologies and Applications. 2023; 5: 100291
  • 20. Freitas A., Rodrigues J., Maciel C.C., Pires A., Lemes A., Ferreira M., Botaro V., Improvements in thermal and mechanical properties of composites based on thermoplastic starch and Kraft Lignin. International Journal of Biological Macromolecules 2021; 184: 863-873.
  • 21. Chiumarelli M., Hubinger M.D., Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids 2014; 38: 20-27.
  • 22. Gao, H., & Qiang, T.. Fracture surface morphology and impact strength of cellulose/PLA composites. Materials 2017; 10(6): 624.
  • 23. Pater, Z., Tomczak J., Kołodziej P., Boryga M., Gołacki, K. Stand for soft tissue impact tests: patent description no. 22577, 2017 (digital edition); Reported 16/01/2015; The application was announced on July 18, 2016 BUP 15/16; Published on May 31, 2017 WUP 05/17 (in polish).
  • 24. Pater, Z., Tomczak J., Kołodziej P., Boryga M., Gołacki, K. Frame for mounting samples – shaped: protection right for a utility model no. Y1 69224, utility model application no. U1 123714; Published on 2017 (in polish).
  • 25. Brzoska Z. Wytrzymałość materiałów. Cz. 2. PWN Warszawa, 1983.
  • 26. Verma A.K, Gautam N., Bharti K.A. Macro- and micro-morphological characteristics of Plantago seeds and its implication for species identification. Current Botany 2017; 8: 159-163.
  • 27. Liu C., Jiang S., Zhang S., Xi T., Sun Q., Xiong L. Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. Starch/Stärke 2016; 68: 239–248.
  • 28. Sukhija S., Singh S., Riar C.S. Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocolloids 2016; 60: 128-137.
  • 29. Kołodziej P., Gołacki K., Stropek Z., Boryga M., Gładyszewska B. Studies on thermoplastic starch film properties under impact load conditions. Przemysł Chemiczny 2014; 93(8): 1375-1378
  • 30. Zhang X., Zhao Y., Li Y., Zhu L., Fang Z., Shi Q. Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. International Journal of Biological Macromolecules 2020; 153: 892-901.
  • 31. Amiria M., Ghasemia A., Bagheria R., FaghihiSani M.A. Evaluating the effect of organomodified nanoclay on mechanical properties of LDPE/thermoplastic starch blends in presence of PE-g-MA. Proceedings of the 5th International Conference on Nanostructures (ICNS5) 6-9 March 2014, Kish Island, Iran.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53e9ca9f-7260-4e30-8f8a-29e326a18abe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.