Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The authors of the review aim to understand and assess cartographic Heat Maps’ (HM) designs, tools, and applications. The paper consists of two parts. First describes HM in the context of neocartography and map design by tackling such issues as definition, input data, methods of density determination and generalization, colour schemes, legend construction, and base maps. The second part assesses the range of 17 tools used for creating HM. Tools are divided into non-GIS tools (visualization tools and programming libraries) and GIS applications (desktop and webGIS). GIS desktop software has been selected due to its popularity and wide application. Paper presents an expert assessment of this software with the use of a research questionnaire. The analysis made it possible to develop a division of tools based on their embedding in computer programs and applications and taking into account the types of visualization. It also made it possible to indicate tools that can be used by both professional GIS users (e.g. analysts, cartographers) and the general public, including teachers using HM to visualize geo data for geography lessons. The limitation of the review was the analysis from the expert’s point of view. It would be desirable to include novices perspectives in future studies due to the wide demand for visualization.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
21--36
Opis fizyczny
Bibliogr. 58 poz., mapy, rys., tab.
Twórcy
autor
- University of Warsaw, Faculty of Geography and Regional Studies
autor
- University of Warsaw, Faculty of Geography and Regional Studies
autor
- University of Warsaw, Faculty of Geography and Regional Studies
Bibliografia
- Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention, 41(3), 359–364. https://doi.org/10.1016/j.aap.2008.12.014
- Antoszkiewicz, M. (2018). Analiza porównawcza wybranych polskojęzycznych serwisów mapowych. University of Warsaw.
- Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016). Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Research, 44(W1), W147–W153. https://doi.org/10.1093/nar/gkw419
- Barter, R. L., & Yu, B. (2018). Superheat: An R Package for Creating Beautiful and Extendable Heatmaps for Visualizing Complex Data. Journal of Computational and Graphical Statistics, 27(4), 910–922. https://doi.org/10.1080/10618600.2018.1473780
- Board, C. (1978). Map Reading Tasks Appropriate In Experimental Studies In Cartographic Communication. Cartographica: The International Journal for Geographic Information and Geovisualization, 15(1), 1–12. https://doi.org/10.3138/AG15-V252-3726-W346
- Bornn, L., Cervone, D., & Fernandez, J. (2018). Soccer analytics: Unravelling the complexity of “the beautiful game”. Significance, 15(3), 26–29. https://doi.org/10.1111/j.1740-9713.2018.01146.x
- Borzuchowska, J. (2007). Poszukiwanie nowych metod kartograficznych dla mapowania problemów społecznych. In W. Żyszkowska & W. Spallek (Eds.), Główne problemy współczesnej kartografii. Kartograficzne programy komputerowe. Konfrontacja teorii z praktyka̜ (pp. 135–144). Uniwersytet Wrocławski.
- Chainey, S., Tompson, L., & Uhlig, S. (2008). The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Security Journal, 21(1–2), 4–28. https://doi.org/10.1057/palgrave.sj.8350066
- Chen, K., Haller, J. L., Kanade, T., & Georghiades, A. S. (2018). Heat map of vehicle damage. https://patents.google.com/patent/US9886771B1/en
- DeBoer, M. (2015). Understanding the Heat Map. Cartographic Perspectives, 80, 39–43. https://doi.org/10.14714/CP80.1314
- Dempsey, C. (2012). Heat Maps in GIS. https://www.gislounge.com/heat-maps-in-gis/
- Dukaczewski, D. (2007). Wojewódzkie portale informacji przestrzennej. Roczniki Geomatyki, V(3), 37–56.
- ESRI. (2020). Can a heat map be created in ArcMap? https://support.esri.com/en/technical-article/000012211
- Faby, H., & Koch, A. (2010). From maps to neo-cartography. In T. Bandrova & M. Konecny (Eds.), Proceedings of the 3rd Interational Conference on Cartography & GIS (p. 6).
- Goldsberry, K. (2012). CourtVision: New Visual and Spatial Analytics for the NBA. MIT Sloan Sports Analytics Conference. https://www.semanticscholar.org/paper/CourtVision-%3A-New-Visual-and-SpatialAnalytics-for-Goldsberry/46e4a7271de62e9118625dec935c4aef1bc0ea74
- Gołebiowska, I., & Coltekin, A. (2020). Rainbow Dash: Intuitiveness, interpretability and memorability of the rainbow colour scheme in visualization. IEEE Transactions on Visualization and Computer Graphics, 1. https://doi.org/10.1109/TVCG.2020.3035823
- Golub, S. (n.d.). Heatmap.py. Retrieved 24 April 2021, from http://www.sethoscope.net/heatmap/
- Google Fusion Tables. (2019). https://en.wikipedia.org/wiki/Google_Fusion_Tables
- Google Maps Platform. Maps JavaScript API. Heatmap Layer. (n.d.). Retrieved 26 April 2021, from https://developers.google.com/maps/documentation/javascript/heatmaplayer
- Gotlib, D. (2008). Nowe oblicza kartografii – Internet a kartografia. Polski Przegląd Kartograficzny, 40(3), 237–246.
- Gove, R., Gramsky, N., Kirby, R., Sefer, E., Sopan, A., Dunne, C., Shneiderman, B., & Taieb-Maimon, M. (n.d.). NetVisia: Heat Map & Matrix Visualization of Dynamic Social Network Statistics & Content. 19–26. https://doi.org/10.1109/PASSAT/SocialCom.2011.216
- Grzeszczyk, M. (2014). Porównanie funkcjonalności internetowych aplikacji mapowych do prezentacji metod oznaczania obiektów punktowych i liniowych [Bachelor thesis]. University of Warsaw.
- Guo, H., Zhang, W., Ni, C., Cai, Z., Chen, S., & Huang, X. (2020). Heat map visualization for electrocardiogram data analysis. BMC Cardiovascular Disorders, 20(1). https://doi.org/10.1186/s12872-020-01560-8
- Heatmapper. (n.d.). Retrieved 24 April 2021, from http://www.heatmapper.ca/
- HeatmapTool.com. (n.d.). Retrieved 24 April 2021, from HeatmapTool.com
- Hotjar. (n.d.). Retrieved 24 April 2021, from https://www.hotjar.com/
- How to Smart Map: Heat Maps. A simple guide to using density within ArcGIS Online. (n.d.). Retrieved 26 April 2021, from https://www.arcgis.com/apps/Cascade/index.html?appid=ca7e12f6e8c0474bb4269889bda8ce41
- Kukułka, M., & Gotlib, D. (2014). Wpływ zjawiska neokartografii na rozwój serwisów internetowych udostępniających informacje przestrzenne. Polski Przegląd Kartograficzny, 46(1), 34–46.
- Lucky Orange. (n.d.). Retrieved 24 April 2021, from https://www.luckyorange.com/heat-maps.php
- McHale, I. G., & Relton, S. D. (2018). Identifying key players in soccer teams using network analysis and pass difficulty. European Journal of Operational Research, 268(1), 339–347. https://doi.org/10.1016/j.ejor.2018.01.018
- Microsoft Excel Heatmap. (n.d.). Retrieved 24 April 2021, from https://www.excel-easy.com/examples/ heat-map.html
- Monmonier, M. S. (2018). How to lie with maps. (Third edition). The University of Chicago Press.
- Moon, J.-Y., Jung, H.-J., Moon, M. H., Chung, B. C., & Choi, M. H. (2009). Heat-map visualization of gas chromatography-mass spectrometry based quantitative signatures on steroid metabolism. Journal of the American Society for Mass Spectrometry, 20(9), 1626–1637. https://doi.org/10.1016/j.jasms.2009.04.020
- Nelson, J. K., & MacEachren, A. M. (n.d.). User-centered Design and Evaluation of a Geovisualization Application Leveraging Aggregated Quantified-Self Data. Cartographic Perspectives, 96, 7–31. https://doi.org/10.14714/CP96.1631
- Netek, R., Pour, T., & Slezakova, R. (2018). Implementation of Heat Maps in Geographical Information System – Exploratory Study on Traffic Accident Data. Open Geosciences, 10(1), 367–384. https://doi.org/10.1515/geo-2018-0029
- Netek, R., Tomecka, O., & Brus, J. (2019). Performance Testing on Marker Clustering and Heatmap Visualization Techniques: A Comparative Study on JavaScript Mapping Libraries. ISPRS International Journal of Geo-Information, 8(8), 348. https://doi.org/10.3390/ijgi8080348
- Opach, T., & Nossum, A. (2011). Evaluating the Usability of Cartographic Animations With Eye-Movement Analysis. Proceedings of the 25th International Cartography Conference ICC, 11. https://icaci.org/files/documents/ICC_proceedings/ICC2011/ Oral%20Presentations%20PDF/A3-Visualisation%20efficiency/CO-005.pdf
- Open Layers Documentation. (n.d.). Retrieved 26 April 2021, from https://openlayers.org/en/latest/apidoc/module-ol_layer_Heatmap-Heatmap.html
- Pánek, J., & Benediktsson, K. (2017). Emotional mapping and its participatory potential: Opinions about cycling conditions in Reykjavík, Iceland. Cities, 61, 65–73. https://doi.org/10.1016/j.cities. 2016.11.005
- Perin, C., Vuillemot, R., & Fekete, J.-D. (2013). SoccerStories: A Kick-off for Visual Soccer Analysis. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2506–2515. https://doi.org/10.1109/TVCG.2013.192
- Pettit, C., Widjaja, I., Russo, P., Sinnott, R., Stimson, R., & Tomko, M. (2012). Visualisation support for exploring urban space and place. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I–2, 153–158. https://doi.org/10.5194/ISPRSANNALS-I-2-153-2012
- Pleil, J. D., Stiegel, M. A., Madden, M. C., & Sobus, J. R. (2011). Heat map visualization of complex environmental and biomarker measurements. Chemosphere, 84(5), 716–723. https://doi.org/10.1016/j.chemosphere.2011.03.017
- Plug, C., Xia, J., & Caulfield, C. (2011). Spatial and temporal visualisation techniques for crash analysis. Accident Analysis & Prevention, 43(6), 1937–1946. https://doi.org/10.1016/j.aap.2011.05.007
- Polczynski, M., & Polczynski, M. (2014). A Microsoft VBA Application for Generating Heat Maps. Transactions in GIS, 18(5), 783–791. https://doi.org/ 10.1111/tgis.12082
- QGIS Documentation 2.10. (n.d.). Retrieved 24 April 2021, from https://docs.qgis.org/3.10/en/docs/index. html
- Rosenbaum, L., Hinselmann, G., Jahn, A., & Zell, A. (2011). Interpreting linear support vector machine models with heat map molecule colouring. Journal of Cheminformatics, 3(1). https://doi.org/10.1186/1758-2946-3-11
- Sainio, J., Westerholm, J., & Oksanen, J. (2015). Generating Heat Maps of Popular Routes Online from Massive Mobile Sports Tracking Application Data in Milliseconds While Respecting Privacy. ISPRS International Journal of Geo-Information, 4(4), 1813–1826. https://doi.org/10.3390/ijgi4041813
- Scott, N., Green, C., & Fairley, S. (2016). Investigation of the use of eye tracking to examine tourism advertising effectiveness. Current Issues in Tourism, 19(7), 634–642. https://doi.org/10.1080/13683500.2014.1003797
- Siejka, M., & Ślusarski, M. (2014). Ocena geoportali internetowych powiatów, na wybranych przykładach oraz według ustalonych kryteriów. Infrastruktura i Ekologia Terenów Wiejskich, 2(2), 545–555.
- Silva, A. T., Ribone, P. A., Chan, R. L., Ligterink, W., & Hilhorst, H. W. M. (2016). A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana. Plant Physiology, 170(4), 2218–2231. https://doi.org/10.1104/pp.15.01704
- Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall.
- Smartlook. (n.d.). Retrieved 24 April 2021, from https://www.smartlook.com/
- Špakov, O., & Miniotas, D. (2007). Visualization of Eye Gaze Data using Heat Maps. Elektronika Ir Elektrotechnika, 74(2), 55–58.
- Strava. (n.d.). https://www.strava.com/heatmap#5.30/8.83889/51.91208/hot/all
- Vosskühler, A., Nordmeier, V., Kuchinke, L., & Jacobs, A. M. (2008). OGAMA (Open Gaze and Mouse Analyzer): Open-source software designed to analyze eye and mouse movements in slideshow study designs. Behavior Research Methods, 40(4), 1150–1162. https://doi.org/10.3758/BRM.40.4.1150
- Wilkinson, L., & Friendly, M. (2009). The History of the Cluster Heat Map. The American Statistician, 63(2), 179–184. https://doi.org/10.1198/tas.2009.0033
- Yeap, E., & Uy, I. (2014). Marker Clustering and Heatmaps: New features in the Google Maps Android API Utility Library. https://mapsplatform.googleblog.com/2014/02/marker-clustering-and-heatmaps-new.html
- Zhan, Z., Zhang, L., Mei, H., & Fong, P. (2016). Online Learners’ Reading Ability Detection Based on Eye-Tracking Sensors. Sensors, 16(9), 1457. https://doi.org/10.3390/s16091457
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53e61e0e-293f-4f41-bda4-24868a236797