PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High pressure impact on changes in potato starch granules

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Air dry potato starch (84.9% d.s.) was subjected to pressurizing under the pressure of 50, 100, 250, 500, 750, 1000 and 2000 MPa for 1 h. The physical properties of pressurized starch, such as morphology, surface and crystalline structure, gelatinization parameters, were studied by means of scanning and atomic force microscopy (SEM/AFM), X-ray diffraction (X-ray), differential scanning calorimetry (DSC). The susceptibility to the amylolytic enzyme (α-amylase) was also measured. Application of pressure in the range of 50–2000 MPa results in an increase in the compressed potato starch bulk density, change in the contours of the granules from oval to polyhedral, increase in the roughness of the granule surface, vanishing of the X-ray reflexes generated by the orthogonal structure and weakening of the reflexes generated by the hexagonal structure, lowering of the enthalpy of starch gelatinization, and the enhancement of hydrolytic susceptibility of starch granules to the amylolytic enzyme.
Rocznik
Strony
65--73
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • University of Zielona Góra, Faculty of Biological Sciences, Zielona Góra, Poland
autor
  • Institute of Agricultural and Food Biotechnology, Department of Food Concentrates and Starch Products, Poznań, Poland
  • Institute of Agricultural and Food Biotechnology, Department of Food Concentrates and Starch Products, Poznań, Poland
autor
  • Polish Academy of Sciences, Institute of Molecular Physics, Poznań, Poland
autor
  • Polish Academy of Sciences, Institute of Molecular Physics, Poznań, Poland
autor
  • Polish Academy of Sciences, Institute of Molecular Physics, Poznań, Poland
  • Poznań University of Life Sciences, Faculty of Food Sciences and Nutrition, Poznań, Poland
autor
  • Poznań University of Technology, Faculty of Technical Physics, Poznań, Poland
Bibliografia
  • 1. Thevelein, J.M. & Assche, J.A.V. (1981). Gelatinization temperature of starch as influenced by high pressure. Carbohydr. Res. 93, 304–307. DOI: 10.1016/S0008-6215(00)80862-9.
  • 2. Muhr, A.H. & Blanshard, J.M.V. (1982). Effect of hydrostatic pressure on starch gelatinization. Carbohydr. Polym. 2, 61–74. DOI: 10.1016/0144-8617(82)90055-8.
  • 3. Kudła, E. & Tomasik, P. (1992). The modification of starch by high pressure Part I: air – and oven-dried potato starch. Starch/Staerke. 44, 167–173. DOI: 10.1002/star.19920440704.
  • 4. Stute, R., Heilbronn, R.W., Klingler, R.W., Boguslawski, S., Eshtiaghi, M.N. & Knorr, D. (1996). Effect of high pressures treatment on starches. Starch/Staerke. 48, 399–408. DOI: 10.1002/star.19960481104.
  • 5. Douzals, J.P., Perrier-Cornet, J.M., Gervais, P. & Coquille, J.C. (1998). High-pressure gelatinization of wheat starch and properties of pressure-induced gels. J. Agric. Food Chem. 46, 4824–4829. DOI: 10.1021/jf971106p.
  • 6. Molina-Garcia, A.D., Horridge, E., Sanz, P.D. & Martino M.N. (2007). Nanostructure of starch high-pressure treated granules discovered by low temperature scanning electron microscopy. In Mėndez-Vilas, A. & Diaz, J. (Eds.), Modern Res. Educ. Top. Micros. (719–725). Formatex.
  • 7. Buckow, R., Heinz, V. & Knorr, D. (2007). High pressure phase transition kinetics of maize starch. J. Food Eng. 81, 469–475. DOI: 10.1016/j.jfoodeng.2006.11.027.
  • 8. Błaszczak, W., Valverde, S. & Fornal, J. (2005). Effect of high pressure on the structure of potato starch. Carbohydr. Polym. 59, 377–383. DOI: 10.1016/j.carbpol.2004.10.008.
  • 9. Liu, Y., Selomulyo, V.O. & Zhou, W. (2008). Effect of high pressure on some physicochemical properties of several native starches. J. Food Eng. 88, 126–136. DOI: 10.1016/j.jfoodeng.2008.02.001.
  • 10. Oh, H.E., Hemar, Y., Anema, S.G., Wong, M. & Pinder, D.N. (2008). Effect of high pressure treatment on normal rice and waxy rice starch-in-water suspensions. Carbohydr. Polym. 73, 332–343. DOI: 10.1016/j.foodhyd.2007.01.0208.
  • 11. Baks, T., Bruins, M.E., Janssen A.E.M. & Boom, R. M. (2008). Effect of pressure and temperature on the gelatinization of starch at various starch concentrations. Biomacromolecules 9, 296–304. DOI: 10.1021/bm700814a.
  • 12. Vallons, K.J.R. & Arendt, E.K. (2009). Effect of high pressure and temperature on structural and rheological properties on sorghum starch. Innov. Food Sci. Emerg. Technol. 10, 449–456. DOI: 10.1016/j.ifset.2009.06.008.
  • 13. Nasehi, B. & Javaheri, S. (2012). Application of high hydrostatic pressure in modifying functional properties of starches: a review. Middle East J. Sci. Res. 11, 856–861.
  • 14. Schenck, F.W. (2012). Starch hydrolysates: an overview. Int. Sugar J. 1238, 82–89.
  • 15. Le Bail, P., Chauvet, B., Simonin, H., Rondeau-Mouro, C., Pontoire, B., Carvalho, M. & Le Bail, A. (2013). Formation and stability of amylase ligand complexes formed by high pressure treatment. Innov. Food Sci. Emerg. Technol.18, 1–6. DOI: 10.1016/j.ifset.2012.10.006.
  • 16. Tester, R.F., Karkalas, J. & Qi, X. (2004). Starch-composition, fine structure and architecture. J. Cereal Sci. 39, 151–165. DOI: 10.1016/j.jcs.2003.12.001.
  • 17. Liu, P.L., Hu, X.S. & Shen, Q. (2010). Effect of high hydrostatic pressure on starches. A review. Starch/Staerke. 62, 615–628. DOI 10.1002/star.201000001.
  • 18. Krupska, A., Więckowski, A.B., Słomińska, L., Jarosławski, L. & Zelonka, R. (2012). Influence of heating time and pressure treatment of potato starch on the generation of radicals: EPR studies. Carbohydr. Polym. 89, 54–60. DOI: 10.1016/j.carbpol.2012.02.037.
  • 19. Hibi, Y., Matsumoto, T. & Hagiwara, S. (1993). Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem. 70, 671–676.
  • 20. Yang, Z., Gu, Q. & Hemar, Y. (2013). In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction. Carbohydr. Polym. 97, 235–238. DOI: 10.1016/j.carbpol.2013.04.075.
  • 21. Kweon, M., Slade, L. & Levine, H. (2008). Role of glassy and crystalline transitions in the responses of corn starches to heat and high pressure treatments: Prediction of solute-induced barostability from solute-induced thermostability. Carbohydr. Polym. 72, 293–299. DOI: 10.1016/j.carbpol.2007.08.013.
  • 22. Kawai, K., Fukami, K. & Yamamoto, K. (2007). Effect of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch-water mixtures treated with high hydrostatic pressure. Carbohydr. Polym. 69, 590–596. DOI: 10.1016/j.carbpol.2007.01.015.
  • 23. Stolt, M., Oinonen, S. & Autio, K. (2001). Effect of high pressure on the physical properties of barley starch. Innov. Food Sci. Emerg. Technol. 1, 167–175. DOI: 10.1016/S1466-8564(00)00017-5.
  • 24. Bauer, B.A. & Knorr, D. (2004). Electrical conductivity: A new tool for the determination of high hydrostatic pressure-induced starch gelatinization. Innov. Food Sci. Emerg. Technol. 5, 437–442. DOI: 10.1016/j.ifset.2004.02.005.
  • 25. Stankowski, J., Waplak, S., Jurga, W. & Krupski, M. (2010). Size-driven ferroelectric effects in TGS induced by high hydrostatic pressure. J. Non-Crystal. Solids. 356, 1305–1309. DOI: 10.1016/j.jnoncrysol.2010.04013.
  • 26. Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J. & Baro, A.M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. DOI: org/10.1063/1.2432410.
  • 27. Chena, L., Renb, F., Zhanga, Z., Tonga, Q. & Rashedb, M.M.A. (2015). Effect of pullulan on the short-term and long-term retrogradation of rice starch. Carbohydr. Polym. 115, 415–421. DOI: 10.1016/j.carbpol.2014.09.006.
  • 28. Zielonka, R., Jarosławski, L. & Słomińska, L. (2010). Elaboration and comparison of methods for efficient determination of starch hydrolysis. Zesz. Probl. Postęp. Nauk Rol. 557, 423–433. DOI: 10.2478/pjct-2013-0037.
  • 29. Nowotny, F. (1969). Ogólne właściwości skrobi. In Nowotny, F. (Eds.), Skrobia (pp. 18–32). Warszawa, Poland: WNT.
  • 30. Lisińska, G. & Leszczyński, W. (1989). Potato Science and Technology. London & New York: Elsevier Applied Science.
  • 31. Gallant, D.J., Bouchet, B. & Baldwin, P.M. (1997). Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32, 177–191. DOI:10.1016/S0144-8617(97)00008-8.
  • 32. Krok, F., Szymońska, J., Tomasik, P. & Szymoński, M. (2000). Non-contact AFM investigation of influence of freezing process on the surface structure of potato starch granule. Appl. Surf. Sci. 157, 4, 382–386. DOI: 10.1016/S0169-4332(99)00554-1.
  • 33. Baker, A.A., Miles, M.J. & Helbert, W. (2001). Internal structure of the starch granule revealed by AFM. Carbohyd. Res. 330, 249–256. DOI: 10.1016/S0008-6215(00)00275-5.
  • 34. Szymońska, J. & Krok, F. (2003). Potato starch granule nanostructure studied by high resolution non-contact AFM. Int. J. Biol. Macromol. 33(1–3), 1–7. DOI: 10.1016/S0141-8130(03)00056-4.
  • 35. Juszczak, L. (2003). Surface of triticale starch granules – NC-AFM observations. Electron. J. Pol. Agric. Univ. 6, 1–10.
  • 36. Thomson, N.H., Miles, M.J., Ring, S.G., Shewry, P.R. & Tatham, A.S. (1994). Real-time imaging of enzymatic degradation of starch granules by atomic force microscopy. J. Vac. Sci. Technol. (N. Y., NY, U. S.) 12, 1565–1568. DOI: org/10.1116/1.587287.
  • 37. Fannon, J.E., Hauber, R.J. & BeMiller J.N. (1992). Surface pores of starch granules. Cereal Chem. 69, 284–288.
  • 38. Stevenson, D.G., Doorenbos, R.K., Jane, J. & Inglett, G.E. (2006). Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch/Staerke. 58, 509–519. DOI: 10.1002/star.200600534.
  • 39. Kudła, E. & Tomasik, P. (1992). The modification of starch by high pressure Part II: Compression of starch with additives. Starch/Staerke. 44, 253–259. DOI: 10.1002/star.19920440704.
  • 40. Katopo, H., Song, Y. & Jane, J. (2002). Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym. 47, 233–244. DOI: 10.1016/S0144-8617(01)00168-0.
  • 41. Liu, H., Yu, L., Dean, K., Simon, G., Petinakis, E. & Chen, L. (2009). Starch gelatinization under pressure studied by high pressure DSC. Carbohydr. Polym. 75, 395–400. DOI: 10.1016/j.carbpol.2008.07.034.
  • 42. Liu, P.L., Zhang, Q., Shen, Q., Hu, X.S. & Wu, J.H. (2012). Effect of high hydrostatic pressure on modified non-crystalline granular starch of starches with different granular type and amylase content. LWT Food Sci. Technol. 47, 450–458. DOI: 10.1016/j.lwt.2012.02.005.
  • 43. Li, W., Zhang, F., Lin, P., Bai, Y., Gao, L. & Shen, Q. (2011). Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. J. Food Eng. 103, 388–393. DOI: 10.1016/j.jfoodeng.2010.11.008.
  • 44. Tegge, G. (2004). Physikalische Eigenschaften. In G. Tegge, (Eds.), Stărke und Stărkederivate (pp. 37–49). Hamburg: Behr’s Verlag GmbH &Co.
  • 45. Tomasik, P. & Horton, D. (2012). Enzymatic conversions of starch. In D. Horton, (Eds.) Adv. Carbohyd. Chem. Biochem. (pp. 59–436). Oxford. DOI: 10.1016/B978-0-12-396523-3.00001-4.
  • 46. Selmi, B., Marion, D., Perrier Cornet, J.M., Douzals, J.P. & Gervais, P. (2000). Amyloglucosidase hydrolysis of high-pressure and thermally gelatinized corn and wheat starches. J. Agric. Food Chem. 48, 2629–2633. DOI: 10.1021/jf991332u
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53e2597d-6d3f-4aaa-bb0e-746d5ae2a25a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.