Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is aimed at comparing Rough Set Theory (RST) and Formal Concept Analysis (FCA) with respect to algebraic structures of concepts appearing in both theories, namely algebras of definable sets and concept lattices. The paper presents also basic ideas and concepts of RST and FCA together with some set theoretical concepts connected with set spaces which can serve as a convenient platform for a comparison of RST and FCA. In the last section there are shown necessary and sufficient conditions for the fact, that families of definable sets and concept extents determined by the same formal contexts are equal. This in finite cases is equivalent to an isomorphism of respective structures and generally reflects a very specific situation when both theories give the same conceptual hierarchies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
235--256
Opis fizyczny
Bibliogr. 58 poz., tab.
Twórcy
autor
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
- [1] Banerjee M, Chakraborty M. Rough sets through algebraic logic, Fundamenta Informaticae, 1996; 28:211-221.
- [2] Banerjee M, Chakraborty M. Algebras from rough sets, in: Rough-neural computing: Techniques for computing with words. (S.K. Pal. L. Polkowski, A. Skowron, Eds.), Springer-Verlag, 2003 pp. 157-184. doi:10.1007/978-3-642-18859-6_7.
- [3] Cattaneo G. Generalized rough sets. Preclusivity fuzzy-intuitionistic (BZ) lattices, Studia Logica, 1997; 58(1):47-77. URL https://www.jstor.org/stable/20015892.
- [4] Cattaneo G. Abstract approximation spaces for rough theories, in: Rough Sets in Knowledge Discovery (L. Polkowski, A. Skowron, Eds.), Physica-Verlag, 1998 pp. 59-98.
- [5] Demri S, Orłowska E. Incomplete Information: Structure, Inference, Complexity, Springer-Verlag, 2002. ISBN: 3540419047.
- [6] Duda J. Boolean concept lattices and good contexts, Časopis Pro Pěstowani Matematiky, 1989; 114(2): 165-175. URL http://dml.cz/dmlcz/108709.
- [7] Düntsch I, Gediga G. Approximation operators in qualitative data analysis, in: Theory and Application of Relational Structures as Knowledge Instruments (H. de Swart, E. Orłowska, G. Schmidt, M. Roubens Eds.), Springer-Verlag, 2003 pp. 216-233. URL https://doi.org/10.1007/978-3-540-24615-2_10.
- [8] Düntsch I, Gediga G, Orłowska E. Relational attribute systems. International Journal of Human-Computer Studies, 2001; 55(3):293-309. URL https://doi.org/10.1006/ijhc.2001.0468.
- [9] Ganter B. Lattices of Rough Sets abstractions as P-products, Manuscript, 2007.
- [10] Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations, Springer-Verlag, 1999. doi:10.1007/978-3-642-59830-2.
- [11] Gediga G, Düntsch I. Modal style operators in qualitative data analysis, Proc. of IEEE ICDM’2002 (V. Kumar, S. Tsumoto, N. Zhong, P. S. Yu, X. Wu, Eds.), IEEE Computer Society, 2002 pp. 155-162. doi:10.1109/ICDM.2002.1183898.
- [12] Greco S, Matarazzo B, Słowiński R. Rough approximation by dominance relations International Journal of Intelligent Systems 2002; 17(2):153-171. URL https://doi.org/10.1002/int.10014.
- [13] Grzymała-Busse J.W. Knowledge acquisition under uncertainty - A rough set approach Journal of Intelligent and Robotic Systems 1998; 1(1):3-16. doi:10.1007/BF00437317.
- [14] Järvinen J. Knowledge Representation and Rough Sets, Doctoral dissertation, University of Turku, Turku Center for Computer Science, 1999.
- [15] Kent RE. Rough concept analysis, Rough Sets, Fuzy Sets and Knowledge Discovery, Proc. International Workshops on Rough Sets and Knowledge Discovery (RSKD’1993), Workshops in Computing. Springer-Verlag, 1994, 245-253. doi:10.1007/978-1-4471-3238-7_30.
- [16] Kent RE. Rough concept analysis: a synthesis of rough sets and formal concept analysis, Fundamenta Informaticae 1996; 27(2-3):169-181. doi:10.3233/FI-1996-272305.
- [17] Kwuida L. Dicomplemented Lattices. A Contextual Generalization of Boolean Algebras, Doctoral Dissertation, Technical University Dresden, Shaker-Verlag, 2004. ISBN-10:3832233504, 13:978-3832233501.
- [18] Lipski W. Informational systems with incomplete information, 3rd International Colloquium on Automata, Languages and Programming (S. Michaelson, R. Milner, Eds.) Edinbourgh University Press, 1976 pp.120-130.
- [19] Orłowska E. Semantic of vague concepts. Applications of rough sets, IPI/ICS PAS Report 469, Polish Academy of Sciences, 1982.
- [20] Orłowska E. Reasoning with incomplete information: rough set based information logics, Proc. Incompleteness and Uncertainty in Information Systems Workshop (V. Algar, S. Bergler, F. Q. Dong, Eds.), Springer-Verlag, 1993 pp. 16-33. doi:10.1007/978-1-4471-3242-4_2.
- [21] Orłowska E, Pawlak Z. Representation of nondeterministic information. Theoretical Computer Science, 1984; 29(1-2):27-39. URL https://doi.org/10.1016/0304-3975(84)90010-0.
- [22] Pagliani P. From concept lattices to approximation spaces: algebraic structures of partial objects. Fundamenta Informaticae, 1993; 18:1-25.
- [23] Pagliani P. Rough sets and Nelson algebras, Fundamenta Informaticae, 1996; 27(2-3):205-219. doi:10.3233/FI-1996-272308.
- [24] Pagliani P. Rough set theory and logic-algebraic strucures, in: Incomplete Information: Rough Set Analysis (E. Orłowska Ed.), Springer-Verlag, 1998 pp. 109-192. doi:10.1007/978-3-7908-1888-8_6.
- [25] Pawlak, Z.: Information systems - theoretical foundations, Information systems, 6, 1981, 205-218.
- [26] Pawlak Z. Rough sets, International Journal of Computing and Information Sciences, 1982; 18:341-356.
- [27] Pawlak Z. Rough sets: An algebraic and topological approach, IPI/ICS PAS Report 482, Polish Academy of Sciences, 1982.
- [28] Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning About Data, Kluwer Academic Publisher, 1991. doi:10.1007/978-94-011-3534-4.
- [29] Pawlak Z. Elementary rough set granules: toward a rough set processor, in: Rough-neural computing: Techniques for computing with words (S. K. Pal, L. Polkowski, A. Skowron, Eds.), Springer-Verlag, 2003 pp. 5-13. doi:10.1007/978-3-642-18859-6_1.
- [30] Pawlak Z. Some issues on rough sets, Transactions on Rough Sets I, vol. 3100 Journal Subline of LNCS, 2004 pp. 1-58. doi:10.1007/978-3-540-27794-1_1.
- [31] Peters JF. Near sets. Special theory about nearness of objects, Fundamenta Informaticae, 2006; 27:1-27.
- [32] Peters JF, Wasilewski P. Foundations of near sets, Information Sciences, 2009; 179(18):3091-3109. doi:10.1016/j.ins.2009.04.018.
- [33] Polkowski L. Rough Sets: Mathematical Foundations, Physica-Verlag, 2002. doi:10.1007/978-3-7908-1776-8.
- [34] Polkowski L, Skowron A. Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning, 1996; 15(4):333-365. URL https://doi.org/10.1016/S0888-613X(96)00072-2.
- [35] Rosch E. Natural categories, Cognitive Psychology, 1973; 4(3):328-350. URL https://doi.org/10.1016/0010-0285(73)90017-0.
- [36] Rauszer C. Algebraic properties of functional dependencies, Bulletin of the Polish Academy of Sciences, Mathematics, 1988; 33:561-569.
- [37] Rauszer C, Skworon A. The discernibility matrices and functions in information systems, in: Intelligent decission support. Handbook of Applications and Advances in the Rough Set Theory (R. Słowiński, Ed.), Kluwer Academic Publisher, 1991 pp. 331-362. doi:10.1007/978-94-015-7975-9_21.
- [38] Saquer J, Deogun JS. Formal rough concept analysis, Proc. New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, 7th International Workshop (RSFDGrC ’1999) (N. Zhong, A. Skowron, S. Ohsuga Eds.), vol. 1711 of LNCS, 1999 pp. 91-99. doi:10.1007/978-3-540-48061-7_13.
- [39] Saquer J, Deogun JS. Concept approximations based on rough sets and similarity measures, International Journal of Applied Mathematics and Computer Science, 2001; 11(3):655-674.
- [40] Skowron A. Toward intelligent systems: Calculi of information granules, Bulletin of the International Rough Set Society, 2001; 5:9-30.
- [41] Skowron A. Rough sets and vague concepts, Fundamenta Informaticae, 2005; 64(1-4):417-431.
- [42] Skowron A, Stepaniuk J. Tolerance approximation spaces, Fundamenta Informaticae, 1996; 27(2-3):245-253.
- [43] Ślęzak D. Approximate entropy reducts, Fundamenta Informaticae, 2002; 53(3-4):365-390. URL bwmeta1.element.baztech-article-BUS2-0004-0078.
- [44] Ślęzak D, Wasilewski P. Granular sets - Foundations and case study of tolerance spaces, Proc. 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC2007) (A. An, J. Stefanowski, S. Ramanna, C. J. Butz, W. Pedrycz, G. Wang,Eds.), vol. 4482 of LNAI, 2007 pp.435-442. doi:10.1007/978-3-540-72530-5_52.
- [45] Słowiński R, Stefanowski J. Rough set reasoning about uncertain data, Fundamenta Informaticae, 1996; 27(2-3):229-243.
- [46] Vakarelov D. A modal logic for similarity relations in Pawlak representation systems, Fundamenta Informaticae, 1991; 15:61-79.
- [47] Wasilewski P. Dependency and supervenience, Proc. Concurrence, Specifiation and Programming (CS&P’2003), vol. 2, (L. Czaja, Ed.), University of Warsaw Press, 2003 pp. 550-560.
- [48] Wasilewski P. On selected similarity relations and their applications into cognitive science (in Polish), Doctoral Dissertation, Jagiellonian University: Department of Logic, September 2004.
- [49] Wasilewski P. Concept lattices vs. approximation spaces, Proc. 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC’2005), Part I (D. Ślęzak, G. Wang, M. Szczuka, I. Düntsch, Y. Yao Eds.), vol. 3641 of LNCS, 2005 pp. 114-123.
- [50] Wasilewski P. Indiscernibility relations, Manuscript.
- [51] Wasilewski P, Ślęzak D. Foundations of rough sets from vagueness perspective. in: Rough Computing. Theories, Technologies and Applications (A. E. Hassanien, Z. Suraj, D. Ślęzak, P. Lingras Eds.), Information Science Reference, 2008 pp. 1-37. doi:10.4018/978-1-59904-552-8.ch001.
- [52] Wille R. Restructuring lattice theory, in: Ordered Sets (I. Rival Ed.), Reidel, 1982; 83:445-470. doi:10.1007/ 978-94-009-7798-3_15.
- [53] Wille R. Introduction to Formal Concept Analysis, Technical Report 1878. Technishe Hochschule Darmstadt, 1996.
- [54] Wolff KE. A conceptual view of knowledge bases in rough set theory, Proc. 2nd International Conference on Rough Sets and Current Trends in Computing (RSCTC2000) (W. Ziarko, Y. Yao Eds.), vol. 2005 of LNCS, 2001 pp. 220-228. doi: 10.1007/3-540-45554-X_26.
- [55] Wolski M. Formal Concept Analysis and Rough Set Theory from the Perspective of Finite Topological Approximation, Transactions on Rough Sets III, Journal Subline, vol. 3400 of LNCS, 2005 pp. 230-243. doi:10.1007/11427834_11.
- [56] Yao YY. A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis, Proc. 4th International Conference on Rough Sets and Current Trends in Computing (RSCTC’2004) (S. Tsumoto, R. Słowiński, H. J. Komorowski, G.W. Grzymała-Busse Eds.), vol. 3066 of LNCS, Springer-Verlag, 2004 pp. 59-68. doi:10.1007/978-3-540-25929-9_6.
- [57] Yao YY. Concept Lattices in Rough Set Theory, Proc. 2004 Annual Meeting of the North American Fuzzy Information Processing Society (S Dick, L Kurgan, W. Pedrycz, M. Reformat, Eds.), IEEE 04TH8736, 2004 pp. 796-801. doi:10.1109/NAFIPS.2004.1337404.
- [58] Ziarko W. Variable precision rough set model, Journal of Computer and System Siences, 1993; 46(1):35-59. URL https://doi.org/10.1016/0022-0000(93)90048-2.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53deaa17-b7c1-49d1-836e-5c0a0289285c