
Scientific Issues
Jan Długosz University
in Częstochowa
Mathematics XXIII (2018)
25–34
DOI http://dx.doi.org/10.16926/m.2018.23.02

SOME REMARKS ON STRONG SEQUENCES

JOANNA JURECZKO

Abstract

Strong sequences were introduced by Efimov in the 60s’ of the last century as a useful
method for proving well known theorems on dyadic spaces i.e. continuous images of the
Cantor cube. The aim of this paper is to show relations between the cardinal invariant
associated with strong sequences and well known invariants of the continuum.

1. Introduction

Strong sequences were introduced by B. A. Efimov in [4], as a useful
tool for proving well known theorems on dyadic spaces. Among others he
proved that strong sequences do not exist in the subbase of the Cantor
cube. This is our opinion that it could be interesting the answer of the
natural question about properties of spaces in which strong sequences exist
and consequences of such existence. This is how the interest of the strong
sequences method was born, (for further historical notes concerning strong
sequences see [6]). Particularly, strong sequences method, as was shown in
e.g. [7, 8] is equivalent to partition theorems. Moreover, if we associate the
cardinal invariant with the length of strong sequences in spaces where such
sequences exist, we can obtain interesting results, (see also [8, 9]). This is
our hope that this invariant can be usefull characterisation of such spaces.

In this paper we will consider the space (ωω,≤∗) in which, as we will
show, strong sequences exist. We will investigate inequalities between in-
variant ŝ associated with strong sequences and other well known invariants
like: boundeness, covering number and the invariant associated with MAD
families.

Our paper is organized as follows. In section 2 we gather all definitions
and previous facts needed for further parts of this paper. In Section 3
we show main results. The paper is finished by some results in forcing,
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(Section 4) in which we will show some strong inequalities which can be
obtained between ŝ and considered invariants. In this part we give some
open problems.

2. Definitions and previous results

1. Consider a partially preordered set (X,�), i.e. a set ordered by reflex-
ive and transitive relation �. Let a, b, c, x ∈ X. We say that a and b are
comparable iff a � b or b � a. We say that a and b are compatible iff there
exists c ∈ X such that a � c and b � c. (In this case we say that a, b have
a bound). A set A ⊂ X is called an ω-directed set iff every subset of A of
cardinality less than ω has a bound which belongs to A.

Definition 1. A sequence (Sφ, Hφ)φ<α, where Sφ, Hφ ⊂ X, and |Sφ| < ω

is called a strong sequence if:
1o Sφ ∪Hφ is ω-directed for all φ < α;
2o Sψ ∪Hφ is not ω-directed, for all ψ and φ such that φ < ψ < α.

In [6] the strong sequence number ŝ (X) was introduced as follows:

(1) ŝ (X) = sup {κ : there exists a strong sequence on X of length κ} .
2. We say that (X,�) iff � is reflexive and transitive.

A subset B ⊂ X is called bounded iff B has a bound. The set which is not
bounded will be called unbounded.
A subset A ⊆ B ⊆ X is called cofinal in B iff for any b ∈ B there exists
a ∈ A such that b � a. A cofinal subset in the whole set X is called also a
dominating set. The following invariants are well known:

(2) b (X) = min {|A| : A ⊂ X ∧A is unbounded in X} ,

(3) d (X) = min {|A| : A ⊂ X ∧A is cofinal in X} .

Fact 1 ([3]). Let (X,�) be a partially preordered set without maximal
elements. Then b (X) is regular and

(4) b (X) ≤ cf (d (X)) ≤ d (X) .

3. We will provide our considerations for (X,�) = (ωω,≤∗), i.e. in the
set of all functions ω → ω ordered by

(5) f ≤∗ g iff | {n ∈ ω : g (n) < f (n)} | < ω.

We accept the notation: ŝ = ŝ (ωω) , b = b (ωω) , d = d (ωω).

4. A family I of subsets of X which satisfies the following three condi-
tions



SOME REMARKS ON STRONG SEQUENCES 27

1) A ∈ I and B ⊂ A then B ∈ I;
2) {x} ∈ I for all x ∈ I;
3) X 6∈ I
is called a family of thin sets.
A subfamily B ⊂ I is called a base of the family I of thin sets iff for each
set A ∈ I there exists a set B ∈ B such that A ⊆ B.

We remind definitions of the following invariants, (see e. g. [3] p.250):

(6) add (I) = min
{
|A| : A ⊂ I ∧

⋃
A 6∈ I

}
(7) cov (I) = min

{
|A| : A ⊂ I ∧

⋃
A = X

}
(8) non (I) = min {|A| : A 6∈ I ∧A ∈ P (X)}

(9) cof (I) = min {|A| : A ⊂ I ∧ A is a base of I} .
Notice that any ideal on X is a family of thin sets. (Clearly, I is an ideal

iff add (I) ≥ ℵ0).

The following diagram is known in the literature as "Cichoń diagram"
and was introduced by Fremlin in [5]. Since that paper the diagram has
been completed and modified by many authors. Below we remind this dia-
gram for four invariants defined above.

Fact 2 ([1]). If I is a family of thin sets, then

ℵ0 - add(I)

cov(I)

non(I)

cof(I) 2ℵ0-�
�
�
��

@
@
@
@R

@
@
@
@R

�
�
�
��

where α→ β denotes α ≤ β.

5. Let R be the real line with standard topology. Let µ be the Lebesque
measure on R. Then
(10) M = {A ⊂ R : A is meager},

(11) N = {A ⊂ R : µ (A) = ∅} .
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Notice, thatM and N are both ideals.
6. In [1] one can find the following results:

Fact 3 (Bartoszyński) cov (M) is the cardinality of the smallest fam-
ily F ⊆ ωω such that

(12) ∀g∈ωω∃f∈F | {n ∈ ω : f (n) 6= g (n)} | < ω.

Fact 4 (Keremedis) non (M) is the cardinality of the smallest family
F ⊆ ωω such that

(13) ∀g∈ωω∃f∈F | {n ∈ ω : f (n) = g (n)} | < ω.

Fact 5 (Rothberger)

(14) cov (M) ≤ non (N ) and cov (N ) ≤ non (M) .

Fact 6 (Bartoszyński, Raisonnier and Stern)

(15) add (N ) ≤ add (M) ,

(16) cof (M) ≤ cof(N ).

Fact 7 (Miller, Truss)

(17) add (M) = min {cov (M) , b} .

Fact 8 (Fremlin)

(18) cof (M) = max {non (M) , d} .

According to equalities (14) - (18) the following diagram holds:

Fact 9 ([1]).

cov(N ) non(M) cof(M) cof(N )

add(N ) add(M) cov(M) non(N )

b d

- -

6

6

6

6

6

-

-- -

6

-

where α→ β denotes α ≤ β.
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Observation 1. (i) Let F ⊆ ωω be the smallest family of the property

∀g∈ωω∃f∈F | {n ∈ ω : f (n) = g (n)} | < ω.

Then | {n ∈ ω : fα (n) 6= fβ (n)} | = ω for all fα, fβ ∈ F , α 6= β.
(ii) Let F ⊆ ωω be the smallest family of the property

∀g∈ωω∃f∈F | {n ∈ ω : f (n) 6= g (n)} | < ω.

Then | {n ∈ ω : fα(n) 6= fβ(n)} | = ω for all fα, fβ ∈ F , α = β.

Proof. We prove (i) only, (ii) can be proved similarly but using Fact 3.
(i) By Fact 4 we have |F| = non (M). Suppose in contrary that there are
α 6= β such that | {n ∈ ω : fα (n) = fβ (n)} | = ω. Let

A (α, β) = {n ∈ ω : fα (n) = fβ (n)} .

Let {gγ ∈ ωω \ F : γ < η} be a family such that

| {n ∈ ω : gγ (n) = fβ (n)} | < ω

for all γ < η. Let B(γ, β) = {n ∈ ω : gγ (n) = fβ (n)} for all γ < η.
Obviously |A (α, β) ∩ B (γ, β) | < ω. Then gγ (n) = fα (n) for all n ∈
A (α, β) ∩B (γ, β). A contradiction with the minimality of F . �

7. Two functions f, g ∈ ωω are almost disjoint iff there are finite values
of α ∈ Dom (f) ∩ Dom (g) such that f (α) = g (α). When the functions
have domain ω almost disjointness means that they are eventually different
(f (α) 6= g (α)) for all sufficiently large α < ω. A maximal almost disjoint
(MAD) family of functions on ω is an almost disjoint family of functions
ω → ω that is not properly included in another such family. In [2] the
following invariant is associated with MAD families of functions:

(19) ae = min {A ⊆ P (ωω) : A is a MAD family} .

Fact 10 ([2]).

(20) ae ≥ ω+.

Observation 2.

(21) non (M) ≤ ae.

Proof. Immediately by Fact 4. �
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3. Main results

Theorem 1.

(22) b ≤ ŝ.

Proof. Suppose that ŝ < b and κ ≤ ŝ. Let {(Sα, Hα) : α < κ} be a maximal
strong sequence in ωω. For any α < κ define

Aα = {f ∈ Sα \Hβ : {f} ∪Hβ is not ω-directed for β < α} .
Define an increasing function

F : κ→
⋃
α<κ

(Sα ∪Hα) .

such that
F (α) =

{
fα ∈ Hα for α = 0;
fα ∈ Aα for α > 0.

Since ωω has no maximal elements, this function is well-defined.
Let

A = {fα ∈ Aα : fα = F (α) , α < κ} .
Since κ < b, there exists g ∈ A such that fα ≤ g, for all fα ∈ Sα. As ωω has
no maximal elements, there exists h ∈ ωω\

⋃
α<κ (Sα ∪Hα) such that g < h.

Thus there exists a maximal ω-directed set S ⊂ ωω \
⋃
α<κ (Sα ∪Hα) such

that h ∈ S and S ∪ Hα is not ω-directed for any α < κ. A contradiction
with maximality of the strong sequence {(Sα, Hα) : α < κ}. �

Theorem 2.

(23) cov (M) ≤ ŝ.

Proof. Let cov (M) = κ. By Fact 3 there exists the smallest family

F = {fα ∈ ωω : α < κ}
fulfilling (12)

Thus we can construct a function H : ωω → κ such that

H (g) = min {α : | {n ∈ ω : fα (n) = g (n)} | = ω} .
The family F is well-ordered hence the function H is well-defined.
We will construct a strong sequence in ωω with relation defined as follows:

if fα ∈ F , then fα � g iff h (g) = α;

if f 6∈ F , then f � g iff | {n ∈ ω : f (n) = g (n)} | = ω.

Let g0 ∈ ωω be an arbitrary function. Then there exists f ∈ F such
that | {n ∈ ω : f (n) = g0 (n)} | = ω. Let fα0 ∈ F be a function such that
h (g0) = α0. Let S0 = {g0} and H0 = {g ∈ ωω : h (g) = α0} . Obviously
H0 is non-empty. Let (S0,H0) be the first element of a strong sequence.
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Since H0 6= ωω there exists g1 ∈ ωω \ H0 such that h (g1) 6= α0. Hence
we can construct the next element of the strong sequence. Let fα1 ∈ F be
a fucntion such that | {n ∈ ω : g1 (n) = fα1 (n)} | = ω. Let S1 = {g1} and
H1 = {g ∈ ωω \ H0 : h (g) = α1} .

Assume that the strong sequence {(Sγ ,Hγ) : γ < β} such that

(Sγ ,Hγ) =
(
{gγ} ,

{
g ∈ ωω \

⋃
{Hδ : δ < γ} : h (g) = αγ

})
,

where gγ ∈ ωω \
⋃
δ<γ Hδ, has been defined,.

Since β < κ and by Observation 1, there exists gβ ∈ ωω \
{
fαγ : γ < β

}
be a function such that |

{
n ∈ ω : gβ (n) = fαβ (n)

}
| = ω. Let

(Sβ,Hβ) =
(
{gβ} ,

{
g ∈ ωω \

⋃
{Hγ : γ < β

}
: h (g) = αβ}

)
.

Thus the strong sequence of length |F| has been constructed. �

Theorem 3.

(24) ae ≤ ŝ.

Proof. By Fact 8 we have ae ≥ ω+. Let Fe be a MAD family of functions
ω → ω of cardinality ω+. We will construct a strong sequence of cardinality
ω+ in ωω with the following relatio:

f � g iff | {α ∈ ω : f (α) = g (α)} | = ω.

Let f0 ∈ Fe be a function. Let (S0,H0) = ({f0} , {g ∈ ωω : f0 � g}) be the
first element of a strong sequence. Obviously (S0,H0) is non-empty because
f0 ∈ H0. Let f1 ∈ Fe \ H0. Let (S1,H1) = ({f1} , {g ∈ ωω : f1 � g}) . By
our construction H0 ∪ H1 is not ω-directed. Let (S1,H1) be the second
element of the strong sequence.

Assume that the strong sequence {(Sγ ,Hγ) : γ < β < ω+} such that

(Sγ ,Hγ) =
(
{fγ} ,

{
g ∈ ωω \

⋃
{Hδ : δ < γ : fγ � g

})
,

where fγ ∈ Fe \
⋃
{Hδ : δ < γ}, has been defined.

Since β < ω+ there exists fβ ∈ Fe \
⋃
{Hγ : γ < β}. Let

(Sβ,Hβ) =
(
{fβ} ,

{
g ∈ ωω \

⋃
{Hδ : γ < β : fβ � g

})
,

Thus the strong sequence of length |F| has been constructed. �

Corollary 1.

(25) non (M) ≤ ae ≤ ŝ.

Proof. Immediately by Fact 10 and Theorem 3. �

Theorem 4. In (ωω,≤∗) there exists a strong sequence of length 2ℵ0 .
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Proof. Fix a MAD family of sets A =
{
Aα ⊆ [ω]ω : α < 2ℵ0

}
, (i.e. a family

of infinite subsets of ω such that |A ∩ B| < ω for any A,B ∈ A). For each
A ∈ A consider functions: FAn ∈ ωω such that

FAn (a) =

{
n+ 1 for a ∈ A
0 for a 6∈ A

and FAω ∈ ωω such that

FAω (a) =

{
a for a ∈ A
0 for a 6∈ A.

Obviously
FA0 <∗ FA1 <∗ ... <∗ FAω .

Now take (SA, HA) =
(
{FAω },

{
FAn : n < ω

})
. Then SA ∪HA is ω-directed,

because FAω is its bound. Now take Aα, Aβ ∈ A such that α < β. Then
SAβ ∪HAα is not ω-directed, because it contains no bound for HAα . Since
all MAD families have cardinality 2ℵ0 we obtain that {(SA, HA) : A ∈ A}
is the required strong sequence. �

Corollary 2. The following diagram holds

non(M) cof(M)

add(M) cov(M)

b d

ŝ
ae

2ℵ0

ℵ0

-

6

6

6

6

-

- -

-

@
@
@

@@I

XXXXz XXXXz ���
���

���
���:

where α→ β means α ≤ β:

Proof. Immediately by equalities (4), (17), (18) and Theorems 1-4. �

4. Some results for forcing notion

According to [1] pp. 380-397, the following inequalities are consistent
with ZFC.

In the iterated Cohen’s model with finite supports non (M) = ℵ1 ∧
cov (M) = c which is connecting with Cichoń diagram we have add (N ) =
add (M) = cov (M) = non (M) = b = ℵ1 and cov (M) = r = cof (M) =
cof (N ) = non (N ) = c > ℵ1. Thus
(26) add (N ) = add (M) = cov (N ) = cov (M) = b < ŝ.



By adding ℵ2 random reals a model of CH we have non (N ) = ℵ1 <
cov (N ) = ℵ2 = c. Thus

(27) non (N ) < ŝ.

By adding ℵ2 Hechler’s reals (with finite support) to a model of CH we
get cov (N ) = ℵ1 < add (M) = ℵ2 = c. Hence it is consistent that

(28) cov (N ) < ŝ.

Alternatively adding ℵ2 Cohen and Laver reals (with countable support)
over a model of CH we have cov (N ) = ℵ1 < add (M) = ℵ2 = c Thus

(29) cov (N ) < ŝ.

Alternatively iterating ℵ2 times rational perfect forcing and Roslanowski-
Shelah forcing over a model of CH we obtain ℵ1 = non (M) < non (N ) =
d = ℵ2. Therefore, it is consistent that
(30) cov (M) < ŝ.

Finally in the iterated Sachs model we have that cof (N ) = ℵ1. Hence, it
is consistent with ZFC that

(31) cof (N ) < ŝ.

Open problem. Is there any relation between
a) ŝ and cof (M)?
b) ŝ and non (N )?
c) ŝ and cof (N )?
d) ŝ and d?
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