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Abstract: We devote this paper to study of multiobjective pro-
gramming problems with interval valued objective functions. For this,
we consider two order relations LU and LS on the set of all closed
intervals and propose several concepts of Pareto optimal solutions
and generalized convexity. Based on generalized convexity (viz. LU
and LS-pseudoconvexity) and generalized differentiability (viz. gH-
differentiablity) of interval valued functions, the KKT optimality con-
ditions for aforesaid problems are obtained. The theoretical develop-
ment is illustrated by suitable examples.
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1. Introduction

The study of uncertain programming problems has been of considerable interest in
the recent past. Due to inexactness in the data of real world problems, sometimes
coefficients of objective functions and/or constraints are taken as intervals. This
technique has been termed interval-valued programming and has been studied
by many scholars in the past. Some of the recent results can be seen in Wu
(2007, 2008, 2009), Inuiguchi and Mizoshita (2012), Bhurjee and Panda (2012),
Chalco-Cano et al. (2013), Zhang (2013), Zhang et al. (2012), Hosseinzade
and Hassanpour (2011), Jayswal et al. (2011), Singh et al. (2014), and in the
references therein.
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The field of vector optimization, also called multiobjective programming, has
grown remarkably in different directions regarding the settings of optimality con-
ditions and duality theory. With and without differentiability assumptions, it has
been enriched by the applications of different types of generalizations of convex-
ity theory. In this paper we are concerned with interval valued multiobjective
programming, therefore it is necessary to introduce a concept of derivative for
interval valued functions. A variety of notions for the derivative of set valued
functions have been defined and studied in Hukuhara (1967), Banks and Jacobs
(1970), De Blasi (1976), Aubin and Cellina (1984), Aubin and Frankowska (1990,
2000), Ibrahim (1996).

Recently, the concept ofH-derivative was used to study interval valued nonlin-
ear programming problems in Wu (2007, 2009), Zhang et al. (2012). However, this
definition of differentiability is having certain limitations, since H-differentiable
functions (say f) should satisfy the condition that the diameter diam (f) is non-
decreasing in its domain (see Banks and Jacobs, 1970; Bede and Gal, 2005). To
deal with this, some alternative concepts of derivatives of interval valued functions
have been introduced in Bede and Gal (2005), Chalco-Cano and Roman-Flores
(2008), Stefanini (2010), Chalco-Cano et al. (2011). In Stefanini and Bede (2009),
the authors have introduced the concept of generalized Hukuhara derivative of in-
terval valued functions, which is more general than the H-derivative and the weak
derivative of interval valued functions (see Chalco-Cano et al., 2013).

On the other hand, convexity also plays an important role in the study of
optimization and many approaches have been developed and applied to define
convexity of interval valued functions. The concepts of LU , WC convexity and
LU , WC pseudoconvexity of interval valued functions were proposed in Wu (2007,
2009), and the concepts of preinvexity and invexity were extended to interval val-
ued functions in Zhang et al. (2012). In Ahmad et al. (2014), the authors derived
KKT optimality conditions in order to obtain (LS and LU) optimal solutions for
invex interval-valued programming problems by considering generalized Hukuhara
differentiability and generalized convexity (viz. η-preinvexity, η-invexity etc.). In
this paper, we study the KKT optimality conditions for multiobjective program-
ming problems with interval valued objective function by considering pseudocon-
vexity and gH-differentiability.

The paper is organised as follows: in Section 2 we give some arithmetic of
intervals and then give the concept of gH-differentiability of interval valued func-
tions. In Section 3 we propose some solution concepts following from Wu (2009)
and Chalco-Cano et al. (2013) respectively. Further, in Section 4 we derive KKT
optimality conditions for (interval) multiobjective programming problems by con-
sidering objective functions to be gH-differentiable and LU and LS-pseudoconvex.
Moreover, by using the gradient of interval valued functions the same are obtained.
The illustrating examples are presented where necessary. Finally we conclude in
Section 5.
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2. Preliminaries

Let Kc denote the class of all closed and bounded intervals in R, i.e.,

Kc = {[a, b] : a, b ∈ R and a ≤ b}

with b− a being the width of the interval [a, b] ∈ Kc.

2.1. Arithmetic of intervals

Let A ∈ Kc, then we adopt the notation A = [aL, aU ], where aL and aU mean the
lower and upper bounds, respectively. Assume that A = [aL, aU ], B = [bL, bU ] ∈
Kc and λ ∈ R, then by definition we have

A+B = {a+ b : a ∈ A and b ∈ B} = [aL + bL, aU + bU ] (2.1)

λA = λ[aL, aU ] =

{

[λaL, λaU ], if λ ≥ 0
[λaU , λaL], if λ < 0

. (2.2)

Therefore we have

−A = −[aL, aU ] = [−aU ,−aL]

and

A−B = A+ (−B) = [aL − bU , aU − bL].

Aubin and Cellina (1984) and Assev (1986) have shown that the space Kc is
not a linear space with operations (2.1) and (2.2), since it does not contain inverse
element and therefore subtraction is not well defined.

Now, if A = B+C, then the Hukuhara difference (H-difference) or geometrical
or Pontryagin (Tolstonogov 2000) difference of A and B, denoted by A ⊖H B
(Chalco-Cano et al. 2013), is equal to C. If A = [aL, aU ], B = [bL, bU ], A⊖H B =
C = [cL, cU ] exists if aL − bL ≤ aU − bU , where cL = aL − bL and cU = aU − bU

(Wu, 2007, 2009)

Next, in Stefanini and Bede (2009), the concept of the generalization of H-
difference of two intervals has been introduced as follows.

Definition 1 (Stefanini and Bede, 2009) LetA,B ∈ Kc. The generalized Hukuhara
difference (gH-difference) is defined as

A⊖g B = C ⇐⇒

{

(i) A = B + C
or (ii) B = A+ (−1)C

.

Also for any two intervals A = [a, b], B = [c, d] ∈ Kc, A⊖g B always exists and

A⊖g B = [min{a− c, b− d},max{a− c, b− d}].
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2.2. Differentiation of interval valued functions

The function f : Rn −→ Kc, defined on Euclidean space Rn, is said to be the
interval valued function. That is, f(x) = f(x1, ..., xn) is a closed interval in R for
each x ∈ Rn. The interval valued function f(x) can also be written as f(x) =
[fL(x), fU (x)], where fL and fU are real valued functions and fL(x) ≤ fU (x)
for every x ∈ Rn, and are known as lower and upper (end point) functions of f .

A straightforward concept of differentiability of interval valued functions was
introduced in Wu (2007).

Definition 2 Consider f(x) = [fL(x), fU (x)] to be an interval valued function
defined on X ⊂ Rn. We say that f is weakly continuously differentiable at x0,
if the real valued functions fL and fU are continuously differentiable at x0 (i.e.,
all partial derivatives of fL and fU exist in some neighborhood of x0 and are
continuous at x0).

Next, in the papers of Wu (2007, 2009), the author used the concept of H–
differentiability for interval valued functions to study KKT optimality conditions
of programming problems with interval valued objective functions. However, this
definition of differentiability is restrictive; e.g., consider a simple interval valued
function f(x) = [ax5 + x3 − 1, a − ax3 − a2x5], where −1 < a ∈ R. The H-
derivative of f does not exist since H-difference f(0 + h)⊖H f(0) does not exist
as h −→ 0+. In fact, if f(x) = Ph(x), where P is an interval and h(x) is a real
valued function with h′(x) < 0, then f is not differentiable at x = x0 (Bede and
Gal, 2005).

Remark 1 From the above we see that H-differentiablity of interval valued func-
tions is restrictive and, further, the simple interval valued function f(x) = [−1, 1]|x|,
where x ∈ R, is not weakly continuously differentiable at x = 0. In order to
overcome this problem, Chalco-Cano et al. (2013) considered the concept of
gH–differentiability of interval valued functions introduced in Stefanini and Bede
(2009) to investigate interval valued programming problems. Note that in this
paper T denotes the interval T = (t1, t2).

Definition 3 (Stefanini and Bede, 2009) Let f : T −→ Kc be an interval valued
function. Then f is said to be gH-differentiable at t0 ∈ T if

f ′(t0) = lim
h−→0

f(t0 + h)⊖g f(t0)

h

exists in Kc. Also we say that f is gH-differentiable on T if f is gH-differentiable
at each t0 ∈ T .

Theorem 1 (Chalco-Cano et al., 2011) Let f(t) = [fL(t), fU (t)] be an inter-
val valued function. If fL and fU are differentiable at t0 ∈ T then f is gH-
differentable at t0 and

f ′(t0) = [min {(fL)′(t0), (f
U )′(t0)},max{(fL)′(t0), (f

U )′(t0)}].
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The converse of above theorem is not true (see Chalco-Cano et al., 2011).
However, we have the following result.

Theorem 2 (Chalco-Cano et al., 2011) Let f(t) = [fL(t), fU (t)] be an interval
valued function. Then f is gH-differentiable at t0 ∈ T if and only if one of the
following cases holds:
(i) fL and fU are differentiable at t0.
(ii) The derivatives (fL)′−(t0), (f

L)′+(t0), (f
U )′−(t0) and (fU )′+(t0) exist and sat-

isfy (fL)′−(t0) = (fU )′+(t0) and (fL)′+(t0) = (fU )′−(t0).

Proposition 1 (Aubin and Cellina, 1984) Let f(t) = [fL(t), fU (t)] be an inter-
val valued function defined on X ⊆ Rn and x0 ∈ X. Then f is continuous at x0

if and only if fL and fU are continuous at x0.

Definition 4 (Chalco-Cano et al., 2013) Let f(t) = [fL(t), fU (t)] be an interval

valued function defined on X ⊆ Rn and let x0 = (x
(0)
1 , ..., x

(0)
n ) be fixed in X .

(i) We consider the interval valued function hi(xi) = f(x
(0)
1 , ..., x

(0)
i−1, x

(0)
i ,

x
(0)
i+1, ..., x

(0)
n ). If hi is gH-differentable at x

(0)
i , then we say that f has the ith

partial gH-derivative at x0

(

denoted by
(

∂f
∂xi

)

g
(x0)

)

and
(

∂f
∂xi

)

g
(x0) =

(hi)
′(x

(0)
i ).

(ii) We say that f is continuously gH-differentiable at x0 if all the partial gH-

derivatives of
(

∂f
∂xi

)

(x0), i = 1, ..., n exist in some neighbourhood of x0 and

are continuous at x0 (in the sense of interval valued function).

Remark 2 We remark that the continuous gH-differentiablity is more general
than the weakly continuously differentiability of interval valued function. For
example the function f(t) = [−|t|, |t|], t ∈ R, which is not weakly continuous
differentiable at t = 0, is continuously gH-differentiable at t = 0 and f ′(t) =
[−1, 1], for all t ∈ R.

Next we consider the (interval) multivalued function F (x) = (f1(x), ..., fr(x))
defined on X ⊆ Rn, where fk is the interval valued function for k = 1, ..., r.
Therefore, we have fk(x) = [fL

k (x), f
U
k (x)], k = 1, ..., r. Now we introduce the

following:

Definition 5 Let F (x) = (f1(x), ..., fr(x)) be (interval) multivalued function.
We say that F is
(i) (weakly) continuously differentiable at x0 ∈ X if fk, k = 1, ..., r, are weakly

continuously differentiable at x0.
(ii) continuously gH-differentiable at x0 ∈ X if fk, k = 1, ..., r, are continuously

gH-differentiable at x0.

Note that from Definitions 2 and 5(i), we see that the (interval) multivalued
function F = (f1(x), ..., fr(x)) is (weakly) continuously differentiable at x0 if the
real valued functions fL

k and fU
k , k = 1, ..., r are differentable at x0.
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3. Solution concepts

Consider the following (interval) multiobjective programing problem:
(MIP1)

Minimize F (x) = (f1(x), ..., fr(x))

Subject to x = (x1, ..., xn) ∈ X ⊆ Rn.

Here, fk(x) = [fL
k (x), f

U
k (x)], k = 1, ..., r, are interval valued functions and

the feasible set X is assumed to be a convex subset of Rn. Since each fk is a
closed interval in R, we may follow the similar solution concept as that proposed
in Wu (2007). In Wu (2007), a partial ordering ”�LU” was invoked between two
closed intervals as follows:

Let A,B ∈ Kc, then we say that A �LU B iff aL ≤ bL and aU ≤ bU and
A ≺LU B iff A �LU B and A 6= B or, equivalently, A ≺LU B if and only if

{

aL < bL

aU ≤ bU
or

{

aL ≤ bL

aU < bU
or

{

aL < bL

aU < bU
. (3.1)

Next a vector A = (A1, ..., Ar) is said to be an interval valued vector if each
component Ak = [aLk , a

U
k ] is a closed interval for k = 1, ..., r. Also for any two

interval valued vectors A = (A1, ..., Ar) and B = (B1, ..., Br) we write A �LU B

if and only if Ak �LU Bk for each k = 1, ..., r, and A ≺LU B if and only if
Ak �LU Bk for each k = 1, ..., r, and Ah ≺LU Bh for at least one index h. Based
on the above, since F (x) is also interval valued vector, Wu (2009) proposed the
concept of Pareto optimal solutions as follows.

Definition 6 (Wu, 2009) Let x∗ be feasible solution of (MIP1). We say that x∗

is
(i) LU -Pareto optimal solution of (MIP1) if there exists no x̄ ∈ X , s.t. F (x̄) ≺LU

F (x∗).
(ii) strongly LU -Pareto optimal solution of (MIP1) if these exists no x̄ ∈ X ,

s.t. F (x̄) �LU F (x∗).
(iii) weakly LU -Pareto optimal solution of (MIP1) if these exists no x̄ ∈ X , s.t.

fk(x̄) ≺LU fk(x
∗) for k = 1, · · · , r.

Remark 3 (Wu, 2009) Let us denote by XLU
WP , X

LU
P , XLU

SP the set of weakly LU -
Pareto optimal solutions, LU -Pareto optimal solutions and strongly LU -Pareto
optimal solutions, respectively. Then XLU

SP ⊆ XLU
P ⊆ XLU

WP .

Example 1 Consider the following interval valued functions.

f1 =

{

[0, x], if x ≥ 0
[x, 0], if x ≤ 0

, f2 =

{

[0, x(x2 + 1)], if x ≥ 0
[x(x2 + 1), 0], if x ≤ 0

,

f3 = [sinx2, sinx2+1], f4 = [sinx3, sinx3+1], f5 = [sin (x−1)3, sin (x−1)3+1].
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Figure 1.

Figure 2.
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Figure 3.

Figure 4.
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Figure 5.

Figure 6.
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Now, consider the problem (P1) as follows

minF (x)

subject to x− 2 ≤ 0

−x− 2 ≤ 0.

Consider F (x) = (f1(x), f2(x)), then it is clear that there exist no −2 ≤ x̄ ≤ 2
such that f1(x̄) �LU f1(−2) and f2(x̄) �LU f2(−2) (see Figs. 1 and 2). Therefore,
by Definition 6 (ii) and Remark 3, we say that −2 ∈ XLU

SP ∩ XLU
P ∩ XLU

WP for
problem (P1).

Next, if we assume that F (x) = (f1(x), f2(x), f3(x)), then there exists x̄31 = 2,
such that f3(2) = f3(−2) (see Fig. 3). Therefore, −2 ∈ XLU

P ∩ XLU
WP , but

−2 /∈ XLU
SP for problem (P1).

Again, if we assume that F (x) = (f3(x), f4(x), f5(x)), then −2 ≤ x̄41 ≈
−1.1656, x̄42 ≈ −1.6833 ≤ 2, such that f4(x̄41) = f4(x̄42) = f3(−2) (see Fig.
4) and −2 ≤ x̄51 ≈ −1.7325, x̄52 ≈ −1.418, x̄53 ≈ −0.9849, x̄54 ≈ −0.1599 ≤ 2,
such that f5(x̄51) = f4(x̄52) = f4(x̄53) = f4(x̄54) = f3(−2) (see Figs. 5 and 6).
Therefore, −2 ∈ XLU

WP , but −2 /∈ XLU
P , XLU

SP for problem (P1).
Note that the values are determined and graphs are plotted by using GrafEq 2.13,
available at www.peda.com/grafeq/

Next, we consider another solution concept, following from Chalco-Cano et al.
(2013):
Let A = [aL, aU ], the width (spread) of A is defined by w(A) = aS = aU − aL.
Let A = [aL, aU ], B = [bL, bU ] be two closed intervals. Chalco-Cano et al. (2013)
proposed the ordering relation between A and B by considering the minimization
and maximization problems separately.
(i) For maximization, we write A �LS B if and only if aU ≥ bU and aS ≤ bS ,

the width of the interval can be regarded as uncertainty (noise, risk or a
type variance). Therefore, the interval with smaller width (i.e., smaller
uncertainty) and higher upper bound is considered better.

(ii) For minimization, we write A �LS B if and only if aL ≤ bL and aS ≤ bS .
In this case, the interval with smaller width (i.e., smaller uncertainty) and
smaller lower bound is considered better.

We write A ≺LS B if and only if A �LS B and A 6= B, i.e., A ≺LS B if and
only if

{

aL < bL

aS ≤ bS
or

{

aL ≤ bL

aS < bS
or

{

aL < bL

aS < bS
. (3.2)

Next, consider A = (A1, ..., Ar) and B = (B1, ..., Br) to be two interval valued
vectors. We write A �LS B if and only if Ak �LS Bk for each k = 1, ..., r, and
A ≺LS B if and only if Ak �LS Bk for k = 1, ..., r, and Ah ≺LS Bh for at least
one index h.

Definition 7 Let x∗ be a feasible solution of (MIP1). We say that x∗ is
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(i) LS-Pareto optimal solution of (MIP1) if there exists no x̄ ∈ X , s.t. F (x̄) ≺LS

F (x∗).
(ii) strongly LS-Pareto optimal solution of (MIP1) if these exists no x̄ ∈ X .

s.t. F (x̄) �LS F (x∗).
(iii) weakly LS-Pareto optimal solution of (MIP1) if these exists no x̄ ∈ X . s.t.

fk(x̄) ≺LS fk(x
∗) for k = 1, · · · , r.

Remark 4 Let us denote by XLS
WP , X

LS
P , XLS

SP the set of weakly LS-Pareto op-
timal solutions, LS-Pareto optimal solutions, and strongly LS-Pareto optimal
solutions, respectively. Then it is easy to see that XLS

SP ⊆ XLS
P ⊆ XLS

WP .

Example 2 Consider the following interval valued functions.

f6 =

{

[min {x3, 2 sinx}, 0] if x ≤ 0
[0,max{x2, 2 sinx}] if x ≥ 0

, f7 = [cosx3 − 1, cosx3],

f8 = [cosx4 − 1, cosx4], f9 = [cosx5 − 1, cosx5].

Consider F (x) = (f1(x), f2(x), f6(x)), then it is easy to see that there exist
no −2 ≤ x̄ ≤ 2 such that f1(x̄) �LS f1(0), f2(x̄) �LS f2(0) and f6(x̄) �LS f6(0)
(see Figs. 1, 2 and 7). Therefore, by Definition 7 (ii) and Remark 4, we say that
0 ∈ XLS

SP ∩XLS
P ∩XLS

WP for problem (P1).
Next, if we assume that F (x) = (f1(x), f2(x), f6(x), f7(x)), then there exist

x̄7i ∈ (0 − ǫ7, 0 + ǫ7), ǫ7 ≈ 0.31798 > 0, such that f7(x̄7i) = f7(0) (see Fig. 8).
Therefore 0 ∈ XLS

P ∩XLS
WP , but 0 /∈ XLS

SP for problem (P1).
Again, if we assume that F (x) = (f7(x), f8(x), f9(x)), then there exist x̄8i ∈

(0 − ǫ8, 0 + ǫ8), ǫ8 ≈ 0.396315 > 0, such that f8(x̄8i) = f8(0) (see Fig. 9) and
x̄9i ∈ (0 − ǫ9, 0 + ǫ9), ǫ9 ≈ 0.458054 > 0, such that f9(x9i) = f9(0) (see Figs. 10
and 11). Therefore, 0 ∈ XLS

WP , but −2 /∈ XLS
P , XLS

SP for problem (P1).

Proposition 2 Let A,B ∈ Kc.
(i) If A �LS B then A �LU B. (Chalco-Cano et al., 2013).
(ii) If A ≺LS B then A ≺LU B.

Proof For (ii) we have for A ≺LS B:
Case I. aL < bL, aS ≤ bS. This implies aL < bL, aU − aL ≤ bU − bL. Then we
have aU < aU + (bL − aL) ≤ bL + (bU − bL) = bU . Therefore, we have A ≺LU B.
Case II. aL ≤ bL, aS < bS and Case III. aL < bL, aS < bS follow, similarly. �

Note that the converse of Proposition 2 is not valid.

Proposition 3 Let A = (A1, ..., Ar) and B = (B1, ..., Br) be interval valued
vectors.
(i) If A �LS B then A �LU B.
(ii) If A ≺LS B then A ≺LU B.

Proof (i) Since A and B are interval valued vectors and A �LS B, then Ak �LS

Bk for all k = 1, ..., r. Therefore, result follows from (i) of Proposition 2 and (ii)
follows from above and (ii) of Proposition 2 immediately. �
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Figure 7.

Figure 8.
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Figure 9.

Figure 10.
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Figure 11.

Note that the converse of Proposition 3 is not valid, for example let A =
([−x, y], [−x, y]) and B =

([

−x
2 , y

]

,
[

−x
2 , y

])

, x, y ∈ R, then A ≺LU B, but
A �LS B.

The following theorem gives the relation between two solution concepts.

Theorem 3 Let X be a feasible set of (MIP1). Then

(i) XLU
SP ⊆ XLS

SP

(ii) XLU
P ⊆ XLS

P

(iii) XLU
WP ⊆ XLS

WP .

Proof Let x be the feasible solution of (MIP1).
For (i) Let x ∈ XLU

SP . If it is possible that x /∈ XLS
SP , then by Definition 7 there exist

x̂ ∈ X , s.t., F (x̂) �LS F (x). From Proposition 3, we see that F (x̂) �LU F (x).
This is a contradiction. Hence, we see that XLU

SP ⊆ XLS
SP .

(ii) follows along similar lines.
For (iii) let x ∈ XLU

WP and consider x /∈ XLS
WP ; then by Definition 7 there exists

x̂ ∈ X s.t., fk(x̄) ≺LS fk(x) for all k = 1, ..., r. From Proposition 2 fk(x̂) ≺LU

fk(x) for all k = 1, ..., r. This, however, is a contradiction, because x ∈ XLU
WP .

Hence, XLU
WP ⊆ XLS

WP . �

Note that the converse of above theorem is not valid as we show in the following
example.
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Example 3 Consider the following optimization problem

min F (x) =

(

[−x, 0],

[

−x

2
, 0

])

subject to x ∈ R+.

(3.3)

(i) We show x∗ = 0 ∈ XLS
SP . Since, if we suppose that x∗ = 0 /∈ XLS

SP , then by
Definition 7, there exist x 6= 0 in R+ s.t. F (x) �LS F (0),
i.e.,

(

[−x, 0],

[

−x

2
, 0

])

�LS ([0, 0], [0, 0]),

i.e.,

fS
1 (x) = x ≤ 0 = fS

1 (0) and fS
2 (x) =

x

2
≤ 0 = fS

2 (0),

which is a contradiction, because x > 0. Hence, x∗ = 0 ∈ XLS
SP . But x∗ =

0 /∈ XLU
SP , since there exists 1 ∈ R+ s.t. F (1) =

(

[−1, 0],
[

−1
2 , 0

])

≺LU F (0) =
([0, 0], [0, 0]). Also, since x∗ = 0 ∈ XLS

SP , from Remark 4, we have x∗ = 0 ∈ XLS
P

and hence (ii) follows similarly. Also from Remark 4, we have x∗ = 0 ∈ XLS
WP ,

but x∗ = 0 /∈ XLU
WP , since there exist 1 ∈ R+, s.t. f1(1) ≺LU f1(0) and f2(1) ≺LU

f2(0).

4. Karush-Kuhn-Tucker type optimality conditions

Consider (interval) multiobjective programming problem
(MIP2)

Minimize F (x) = (f1(x), ..., fr(x))

Subject to gi(x) ≤ 0, i = 1, ...,m,

where X = {x ∈ Rn : gi(x) ≤ 0, i = 1, ...,m} is a feasible set.
In this section we shall obtain KKT type optimality conditions for the opti-

mization problem (MIP2) by using gH-differentiability of interval valued func-
tions. Firstly we define the concept of pseudoconvexity for interval valued func-
tions.

Definition 8 (Bazarra et al., 1993) Let f be a differentiable real valued function
defined on non-empty convex subset X of Rn, then f is said to be pseudoconvex
at x∗ if for f(x) < f(x∗) there is ∇f(x∗)T (x−x∗) < 0 for x ∈ X and f is strictly
pseudoconvex at x∗ if for f(x) ≤ f(x∗) there is ∇f(x∗)T (x− x∗) < 0 for x ∈ X .

Wu (2009) extended the concept of pseudoconvexity to interval valued func-
tions as follows.

Definition 9 (Wu, 2009) Consider an interval valued function f defined on
nonempty convex subset X ⊆ Rn. We say that f is LU -pseudoconvex (re-
spectively strictly LU -pseudoconvex) at x∗ ∈ X if and only if fL and fU are
pseudoconvex (respectively strictly pseudoconvex) at x∗.
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Note that if interval valued function f is strictly LU -peudoconvex at x∗ then f
is also LU -pseudoconvex at x∗ (Wu, 2009). Similarly, we may extend the concept
of pseudoconvexity to interval valued function in the LS-sense as follows.

Definition 10 Consider an interval valued function f defined on nonempty con-
vex subset X of Rn and let x∗ ∈ X . We say that f is LS-pseudoconvex (respec-
tively strictly LS-pseudoconvex) at x∗ if and only if fL and fS are pseudoconvex
(respectively strictly pseudoconvex) at x∗.

The above definitions can be extend to (interval) multivalued functions as
follows:

Definition 11 Let X be a nonempty convex subset of Rn and let x∗ ∈ X . We
say that the (interval) multivalued function F (x) = (f1(x), ..., fr(x)) is

(i) LU -pseudoconvex (respectively strictly LU -pseudoconvex) at x∗ if and only
if fk, k = 1, ..., r are LU -pseudoconvex (respectively strictly LU -pseudoconvex)
at x∗.

(ii) LS-pseudoconvex (respectively strictly LS-pseudoconvex) at x∗ if and only
if fk, k = 1, ..., r are LS-pseudoconvex (respectively strictly LS-pseudoconvex)
at x∗.

Proposition 4 Let F be (interval) multivalued function defined on convex subset
X of Rn and let x∗ ∈ X. Then

(i) F is LU -pseudoconvex (respectively strictly LU - pseudoconvex) at x∗ if and
only if fL

k and fU
k , k = 1, ..., r are pseudoconvex (respectively strictly pseu-

doconvex) at x∗.
(ii) F is LS-pseudoconvex (respectively strictly LS-pseudoconvex) at x∗ if and

only if fL
k and fS

k , k = 1, ..., r are pseudoconvex (respectively strictly pseu-
doconvex) at x∗.

Proof From Definitions 9, 10 and 11 the result follows immediately. �

Definition 12 (Bazarra et al., 1993) The cone of feasible directions of non-empty
set X ∈ Rn at x∗ is defined as

D = {d ∈ Rn : d 6= 0, there exist δ > 0, such that x∗ + τd ∈ X, ∀ τ ∈ (0, δ)}

and d ∈ D is called feasible direction of X .

Proposition 5 (Bazarra et al., 1993) Let X = {x ∈ Rn : gi(x) ≤ 0, i = 1, ...,m}
be a feasible set and a point x∗ ∈ X. Let gi be differentiable at x∗ for all i =
1, ...,m. Let J(x∗) = {i : gi(x

∗) = 0} be the index set for the active constraints.
Then

D ⊆ {d ∈ Rn : ∇gi(x
∗)Td ≤ 0 for each i ∈ J(x∗)}.
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(Note that this proposition still holds true if we just assume that gi are continuous
at x∗ instead of differentiable at x∗ for i /∈ J).

Next, the Tucker’s theorem of alternative states that, given the matrices P
and Q, exactly one of the following systems has a solution:
System 1: Px ≤ 0, Px 6= 0, Qx ≤ 0 for some x ∈ Rn;
System 2: PTλ+QTµ = 0 for some λ > 0 and µ ≥ 0.

We also say that the constraint functions gi, i = 1, ...,m, satisfy KKT-assumptions
at x∗ if gi are continuous on Rn and are continuously differentiable at x∗ ∈ X
(Wu, 2007).

In the rest of this paper, we shall assume that the feasible set X of problem
(MIP2) is a convex subset of Rn and the real valued constraint functions gi, i =
1, ...,m, satisfy KKT-assumptions at x∗ ∈ X .

Theorem 4 Assume that the (interval) multiobjective function F is strictly LU -
pseudoconvex and continuously gH-differentiable at x∗. If there exist (Lagrange)
multipliers 0 < λL

k , λ
U
k ∈ R, k = 1, ..., r and 0 ≤ µL

i , µ
U
i ∈ R, i = 1, ...,m such that

the following KKT conditions hold:
(i)

∑r
k=1 λ

L
k∇fL

k (x
∗) +

∑m
i=1 µi∇gi(x

∗) = 0;
(ii)

∑r

k=1 λ
U
k ∇fU

k (x∗) +
∑m

i=1 µi∇gi(x
∗) = 0;

(iii) µL
i gi(x

∗) = 0 = µU
i gi(x

∗), i = 1, ...,m,
then x∗ ∈ XLU

P ∩XLS
P for (MIP2).

Proof Since F is strictly LU -pseudoconvex at x∗, we see by Proposition 4 fL
k

and fU
k , k = 1, ..., r, are strictly pseudoconvex at x∗. We shall prove the result

by contradiction. Suppose that x∗ /∈ XLU
P , then by Definition 6 there exists

x̂ (6= x∗) ∈ X such that

F (x̂) ≺LU F (x∗)

i.e. there exists h, 1 ≤ h ≤ r such that

fh(x̂) ≺LU fh(x
∗)

or, equivalently,

fL
h (x̂) < fL

h (x
∗) or fU

h (x̂) < fU
h (x∗).

Case I. Consider the case fL
h (x̂) < fL

h (x
∗). Since fL

h is strictly pseudoconvex, we
have

∇fL
h (x

∗)T (x̂ − x∗) < 0. (4.1)

Also for k 6= h, k = 1, ..., r, we have either fL
k (x̂) < fL

k (x
∗) or fL

k (x̂) ≤ fL
k (x

∗).
Therefore, we have

∇fL
h (x

∗)T (x̂ − x∗) < 0, for k 6= h. (4.2)
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Now, let d = x̂− x∗. Then y = x∗ + τd = x∗ + τ(x̂− x∗) = τ x̂+ (1− τ)x∗.
Therefore, y ∈ X for τ ∈ (0, 1), since X is a convex set and x̂,x∗ ∈ X . This

shows that d ∈ D is a feasible direction of X . From Proposition 5, we have

∇gi(x
∗)Td ≤ 0, i ∈ J(x∗). (4.3)

Further, let P be the matrix whose rows are ∇fL
k (x

∗)T for k = 1, ..., r, and Q
be the matrix whose rows are ∇gi(x

∗)T for i ∈ J . From (4.1) - (4.3) we conclude
that d is the solution of system 1 of Tucker’s theorem. Hence, there exist no
multipliers 0 < λL

k , k = 1, ..., r, and 0 ≤ µL
i , i ∈ J , such that

r
∑

k=1

λL
k∇fL

k (x
∗) +

∑

i∈J

∇µL
i gi(x

∗) = 0.

Now, by taking µL
i = 0 for i /∈ J, i = 1, ...,m, we get a contradiction with

respect to (i) and (iii) of the theorem.
Case (II). In this case consider fU

h (x) < fU
h (x∗); then, by proceeding similarly as

before, we get a contradiction with respect to (ii) and (iii) of the theorem. This
contradiction shows that x∗ ∈ XLU

P . Hence, the result follows from Theorem 3.
�

Example 4 Consider the following programming problem:

min F =

(

[4x1 − x2 − 1, 4x1 − x2 + 1],

[

−x1

2
+ x2 − 1,

−x1

2
+ x2 + 1

])

subject to − x1 + 1 ≤ 0;

2x1 + x2 − 8 ≤ 0;

x2 − 5 ≤ 0;

x1 − x2 − 4 ≤ 0;

x1, x2 ≥ 0.

It is easy to see that the above problem satisfies the assumptions of Theorem
4. Now, according to conditions (i), (ii) and (iii) of the theorem we consider the
following expression.

λL
1

[

4
−1

]

+λL
2

[

−1
2
1

]

+µ1

[

−1
0

]

+µ2

[

2
1

]

+µ3

[

0
1

]

+µ4

[

1
−1

]

=

[

0
0

]

;

and

λU
1

[

4
−1

]

+λU
2

[

−1
2
1

]

+µ1

[

−1
0

]

+µ2

[

2
1

]

+µ3

[

0
1

]

+µ4

[

1
−1

]

=

[

0
0

]

,
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with

µ1(−x1 + 1) = 0;

µ2(2x1 + x2 − 8) = 0;

µ3(x2 − 5) = 0

µ4(x1 − x2 − 4) = 0.

That is, we have to solve the following simultaneous equations:

4λL
1 −

λL
2

2
− µ1 + 2µ2 + µ4 = 0;

−λL
1 + λL

2 + µ2 + µ3 − µ4 = 0.

and

4λU
1 −

λU
2

2
− µ1 + 2µ2 + µ4 = 0;

−λU
1 + λU

2 + µ2 + µ3 − µ4 = 0.

Upon solving them, we obtain

x∗T = (0, 1), λL
1 = λL

2 =
1

7
, λU

1 = λU
2 =

1

7

and

(µ1, µ2, µ3, µ4) =

(

1

2
, 0, 0, 0

)

.
Therefore, we have x∗T = (0, 1) ∈ XLU

P ∩XLS
P for the above problem.

Theorem 5 Assume that the (interval) multiobjective function F is strictly LS-
pseudoconvex and (weakly) continuously differentiable at x∗. If there exist (La-
grange) multipliers 0 < λL

k , λ
S
k ∈ R, k = 1, ..., r, and 0 ≤ µL

i , µ
S
i ∈ R, i = 1, ...,m,

such that the following KKT conditions hold:
(i)

∑r

k=1 λ
L
k∇fL

k (x
∗) +

∑m

i=1 µ
L
i ∇gi(x

∗) = 0;
(ii)

∑r

k=1 λ
S
k∇fS

k (x
∗) +

∑m

i=1 µ
S
i ∇gi(x

∗) = 0;
(iii) µL

i gi(x
∗) = 0 = µS

i gi(x
∗), i = 1, ...,m,

then x∗ ∈ XLS
P for (MIP2).

Proof The proof is same as that of Theorem 4.

Remark 5 We remark that in Theorem 4 and Theorem 5, the objective function
F has been taken strictly LU -pseudoconvex and strictly LS-pseudoconvex at x∗,
respectively. However, it is interesting to know that these results still hold true if
we assume the (interval) multiobjective function F to be LU -pseudoconvex and
LS-pseudoconvex at x∗. That is, we have the following interesting results.
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Theorem 6 (A) Assume that the (interval) multiobjective function F is LU -
pseudoconvex and continuously gH-differentiable at x∗. If there exist (Lagrange)
multipliers 0 < λL

k , λ
U
k ∈ R, k = 1, ..., r, and 0 ≤ µL

i , µ
U
i ∈ R, i = 1, ...,m, such

that the following KKT conditions hold:
(i)

∑r
k=1 λ

L
k∇fL

k (x
∗) +

∑m
i=1 µ

L
i ∇gi(x

∗) = 0;
(ii)

∑r

k=1 λ
U
k ∇fU

k (x∗) +
∑m

i=1 µ
U
i ∇gi(x

∗) = 0;
(iii) µL

i gi(x
∗) = 0 = µU

i gi(x
∗), i = 1, ...,m,

then x∗ ∈ XLU
P ∩XLS

P for (MIP2).
(B) Assume that the (interval) multiobjective function F is LS-pseudoconvex and
(weakly) continuously differentiable at x∗. If there exist (Lagrange) multipliers
0 < λL

k , λ
S
k , k = 1, ..., r, and 0 ≤ µL

i , µ
S
i ∈ R, i = 1, ...,m, such that the following

KKT conditions hold:
(i)

∑r
k=1 λ

L
k∇fL

k (x
∗) +

∑m
i=1 µ

L
i ∇gi(x

∗) = 0;
(ii)

∑r

k=1 λ
S
k∇fS

k (x
∗) +

∑m

i=1 µ
S
i ∇gi(x

∗) = 0;
(iii) µL

i gi(x
∗) = 0 = µS

i gi(x
∗), i = 1, ...,m,

then x∗ ∈ XLS
P for (MIP2).

Proof The proof is same as that of Theorem 4.

Next we shall present some results for weakly LU -Pareto optimal solutions
and weakly LS-Pareto optimal solutions.

Theorem 7 Assume that there is an interval valued objective function, say hth
interval valued function fh, h ∈ {1, ..., r}, such that it is LU -pseudoconvex and
continuously gH-differentiable at x∗. If there exist (Lagrange) multipliers 0 ≤
µL
i , µ

U
i ∈ R, i = 1, ...,m, such that

(i) ∇fL
h (x

∗) +
∑m

i=1 µ
L
i ∇gi(x

∗) = 0;
(ii) ∇fU

h (x∗) +
∑m

i=1 µ
U
i ∇gi(x

∗) = 0;
(iii) µL

i gi(x
∗) = 0 = µU

i gi(x
∗), i = 1, ...,m,

then x∗ ∈ XLU
WP ∩XLS

WP for (MIP2).

Proof Since for any h we have that fh is LU -pseudoconvex at x∗, then we see
by Definition 9, fL

h and fU
h are pseudoconvex at x∗. We shall prove this result

by contradiction. Suppose that x∗ /∈ XLU
WP , then by Definition 6 there exists

x̂ ∈ X such that fh(x̂) ≺LU fh(x
∗). That is, we have either fL

h (x̂) < fL
h (x

∗) or
fU
h (x̂) < fU

h (x∗).
Case I. Consider the case fL

h (x̂) < fL
h (x

∗). Since fL
h is psedoconvex at x∗, there-

fore we have

∇fL
h (x

∗)T (x̂ − x∗) < 0.

Let d = x̂ − x∗. Then y = x∗ + τd ∈ X for τ ∈ (0, 1), since X is convex and
x̂,x∗ ∈ X . This shows that d ∈ D, is a feasible direction of X . From Proposition
5, we see that

∇gi(x
∗)Td ≤ 0 for i ∈ J(x∗).
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Further, let P be the matrix whose rows are ∇fL
h (x

∗)T , and Q be a matrix whose
rows are ∇gi(x

∗)T for i ∈ J . Then the result follows from similar arguments to
those for Theorem 4. �

Theorem 8 Assume that there is an interval valued objective function, say hth
interval valued function fh, h ∈ {1, ..., r}, such that it is LS-pseudoconvex and
(weakly) continuously differentiable at x∗. If there exist (Lagrange) multipliers
0 ≤ µL

i , µ
S
i ∈ R, i = 1, ...,m, such that the following KKT conditions hold

(i) ∇fL
h (x

∗) +
∑m

i=1 µ
L
i ∇gi(x

∗) = 0;
(ii) ∇fS

h (x
∗) +

∑m
i=1 µ

S
i ∇gi(x

∗) = 0;
(iii) µL

i gi(x
∗) = 0 = µS

i gi(x
∗), i = 1, ...,m,

then x∗ ∈ XLS
WP for (MIP2).

Proof The proof is same as that of Theorem 7.

Next we present some results for strongly LU -Pareto optimal solutions and
strongly LS-Pareto optimal solutions.

Further, let f be an interval valued function defined on a non-empty convex
subset X ∈ Rn then we say that f is strictly L-pseudoconvex (respectively strictly
U -pseudoconvex, strictly S-pseudoconvex) at x∗ if fL (respectively fU , fS) is
strictly psedoconvex at x∗, Wu (2009).

Note that f is strictly LU -pseudoconvex (respectively LS-psedoconvex) at x∗

if f is strictly L-psedoconvex and strictly U -psedoconvex (respectively strictly
L-psedoconvex and strictly S-psedoconvex) at x∗ simultaneously.

Theorem 9 Assume that there is an interval valued objective function say fh, h ∈
{1, ..., r} such that it is continuously gH-differentiable and strictly L-psedoconvex
(respectively strictly U -psedoconvex) at x∗. If there exist (Lagrange) multipliers
0 ≤ µi ∈ R, i = 1, ...,m, such that the following KKT conditions hold

(i) ∇fL
h (x

∗) +
∑m

i=1 µi∇gi(x
∗) = 0,

(

respectively ∇fU
h (x∗) +

∑m
i=1 µi∇gi(x

∗) = 0
)

.
(ii) µigi(x

∗) = 0, i = 1, ...,m,

then x∗ ∈ XLU
SP ∩XLS

SP for (MIP2).

Proof Suppose x∗ /∈ XLU
SP , then by Definition 6 there exists x̂ ∈ X such that

F (x̂) �LU F (x∗). That is fk(x̂) �LU fk(x
∗) for k = 1, ..., r. In particular, we have

fL
h (x̂) ≤ fL

h (x
∗)
(

respectively fU
h (x̂) ≤ fU

h (x∗)
)

.

Since fL
h (respectively fU

h ) is strictly psedoconvex at x∗, therefore we have

∇fL
h (x

∗)T (x̂− x∗) < 0
(

resp. ∇fU
h (x∗)T (x̂− x∗) < 0

)

.

Then the result follows from similar arguments as those discussed regarding
Theorem 4. �
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Next, we present some KKT conditions for (MIP2) using the gradient of
interval valued objective functions via gH-derivative. Consider an interval valued
function f , then the gradient of f at x0 is defined as

∇gf(x0) =

(

(

∂f

∂x1

)

g

(x0), ...,

(

∂f

∂xn

)

g

(x0)

)

,

where
(

∂f
∂xj

)

g
(x0) is the jth partial gH-derivative of f at x0 (see Definition 5).

From Theorem 1, we see that if fL and fU are differentiable functions, then f is
gH-differentiable and in this case,

(

∂f

∂xj

)

g

(x0) =

[

min

{(

∂fL

∂xj

)

(x0),

(

∂fU

∂xj

)

(x0)

}

,

max

{(

∂fL

∂xj

)

(x0),

(

∂fU

∂xj

)

(x0)

}]

is a closed interval.

Example 5 Consider the interval valued function

f(x) = [2x2
1 + 3x2

2, x
3
1 + 3x2 + 1].

Then we have

(

∂f

∂x1

)

g

(x) = [min {4x1, 3x
2
1},max {4x1, 3x

2
1}]

and

(

∂f

∂x2

)

g

(x) = [min {6x2, 3},max{6x2, 3}].

So, the gradient of f is given by

∇gf(x) = ([min {4x1, 3x
2
1},max {4x1, 3x

2
1}], [min {6x2, 3},max{6x2, 3}).

Remark 6 Now, if we consider the H-derivative of f , then there is no partial

derivative
(

∂f
∂x1

)

H
(0, 1) and so there is no gradient of f . Thus, the gradient

of f defined using H-derivative is restrictive. Further, if we assume f to be
weakly continuously differentiable, then clearly we cannot talk about gradient as
we cannot define the partial derivative of f . Therefore, the gradient of f defined
using gH-derivative is more general and it is more robust for optimization.
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Consider the following equation

r
∑

k=1

λk∇gfk(x0) +
m
∑

i=1

µi∇gi(x0) = 0; (4.4)

where the letters have their usual meaning. Since
∑m

i=1 µi
∂gi
∂xj

(x0),
(

∂F
∂xj

)

g
(x0) ∈

R, therefore from Theorem 2, fL, fU , k = 1, ..., r, are continuously differentiable
at x0. Therefore, (4.4) is equivalent to

r
∑

k=1

λk

∂fL
k

∂xj

(x0)+

m
∑

i=1

µi

∂gi
∂xj

(x0) = 0 =

r
∑

k=1

λk

∂fU
k

∂xj

(x0)+

m
∑

i=1

µi

∂gi
∂xj

(x0). (4.5)

For all j = 1, ..., n, (4.5) can be equivalently written as

{
∑r

k=1 λk∇fL
k (x0) +

∑m

i=1 µi∇gi(x0) = 0
∑r

k=1 λk∇fU
k (x0) +

∑m

i=1 µi∇gi(x0) = 0
. (4.6)

Theorem 10 Assume that the (interval) multiobjective function F is strictly LU-
psedoconvex and continuously gH-differentiable at x∗. If there exist (Lagrange)
multipliers 0 ≤ λk ∈ R, k = 1, ..., r and 0 ≤ µi ∈ R, i = 1, ...,m, such that the
following KKT conditions hold:

(i)
∑r

k=1 λk∇gfk(x
∗) +

∑m
i=1 µi∇gi(x

∗) = 0;
(ii) µigi(x

∗) = 0, i = 1, ...,m,

then x
∗ ∈ XLU

P ∩XLS
P for (MIP2).

Proof Since hypothesis (i) is equation (4.4) for x0 = x∗, which is equivalent to
(4.6), we get
(i)
∑r

k=1 λk∇fL
k (x

∗) +
∑m

i=1 µi∇gi(x
∗) = 0,

(ii)
∑r

k=1 λk∇fU
k (x∗) +

∑m
i=1 µi∇gi(x

∗) = 0.
Then the result follows from Theorem 4.

Theorem 11 Assume that the (interval) multiobjective function F is strictly LS-
psedoconvex and continuously gH-differentiable at x∗. If there exist (Lagrange)
multipliers 0 ≤ λk ∈ R, k = 1, ..., r, and 0 ≤ µi ∈ R, i = 1, ...,m, such that the
following KKT conditions hold
(i)

∑r
k=1 λk∇gfk(x

∗) +
∑m

i=1 µi∇gi(x
∗) = 0

(ii) µigi(x
∗) = 0, i = 1, ...,m,

then x∗ ∈ XLS
P for (MIP2).

Proof Since hypothesis (i) is equation (4.4) for x0 = x∗, which means that we
obtain from (4.6)

(i)
∑r

k=1 λk∇fL
k (x

∗) +
∑m

i=1 µi∇gi(x
∗) = 0,

(ii)
∑r

k=1 λk∇fS
k (x

∗) +
∑m

i=1 µi∇gi(x
∗) = 0,

then the result follows from Theorem 4. �
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Definition 13 (Wu, 2009) Let f(x)=[fL(x), fU (x)] be an interval valued func-
tion defined on X ⊆ Rn. We say that f is LU -nonincreasing at x∗ if x ≥ x∗ if
and only if f(x) �LU f(x∗).

We can similarly define the LS-nonincreasing properly by considering the ” �LS ”
order relation.

Theorem 12 Assume that there is an interval valued function, say fh, h ∈ {1, ..., r},
such that it is LU -nonincreasing and it is also strictly U -psedoconvex and con-
tinuously gH-differentiable at x∗. Further assume that ∇fL

h (x
∗) 6= ∇fU

h (x∗). If
there exist (Lagrange) multipliers 0 ≤ µi ∈ R, i = 1, ...,m, such that the KKT
conditions (i) and (iii) or (ii) and (iii) hold simultaneously:
(i) ∇fL

h (x
∗) +

∑m

i=1 µi∇gi(x
∗) = 0;

(ii) ∇fU
h (x∗) +

∑m
i=1 µi∇gi(x

∗) = 0;
(iii) µigi(x) = 0, i = 1, ...,m,
then x∗ ∈ XLS

SP for (MIP2).

Proof Suppose that x∗ /∈ XLU
SP . Then, by Definition 6, there exists x̂(6= x∗) ∈ X

such that ∇fU
h (x∗)T (x̂ − x∗) < 0, since fh is strictly U -pseudoconvex. By using

similar arguments to those for Theorem 4, we see that x∗ ∈ XLU
SP for (MIP2) if

conditions (ii) and (iii) are satisfied.
Further, since fh is gH-differentiable at x∗, then

(

∂fL
h

∂xi

)

(x∗) ≤

(

∂fU
h

∂xi

)

(x∗), for all i = 1, ..., n.

Therefore, we have

∇fL
h (x

∗) ≤ ∇fU
h (x∗).

Also, since fh is LU -nonincreasing and ∇fL
h (x

∗) 6= ∇fU
h (x∗), we have

∇fL
h (x

∗)T (x̂ − x∗) < ∇fU
h (x∗)T (x̂− x∗) = 0,

i.e.,

∇fL
h (x

∗)T (x̂ − x∗) < 0.

Now by using similar arguments to those of Theorem 4 the result follows if con-
ditions (i) and (iii) are satisfied. �

Theorem 13 Suppose there is an (interval) multiobjective function, say fh, h ∈
{1, ..., r}, such that it is LS-nonincreasing and it is strictly L-psedoconvex (respec-
tively strictly S-psedoconvex) and continuously gH-differentiable at x∗. Further
assume that ∇fS

h (x
∗) ≤ ∇fL

h (x
∗) (respectively ∇fL

h (x
∗) ≤ ∇fS

h (x
∗)). If there

exist (Lagrange) multipliers 0 ≤ µi ∈ R, i = 1, ...,m, such that the KKT condi-
tions (i) and (iii) or KKT conditions (ii) and (iii) hold simultaneously:
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(i) ∇fL
h (x

∗)+
∑m

i=1 µi∇gi(x
∗) = 0, (respectively ∇fS

h (x
∗)+

∑m
i=1 µi∇gi(x

∗) =
0;

(ii) ∇fS
h (x

∗)+
∑m

i=1 µi∇gi(x
∗) = 0, (respectively ∇fL

h (x
∗)+

∑m

i=1 µi∇gi(x
∗) =

0;
(iii) µigi(x) = 0, i = 1, ...,m,

then x∗ ∈ XLS
SP for (MIP2).

Proof Suppose that x∗ /∈ XLU
SP . Then, by Definition 6, there exists x(6= x∗) ∈ X

such that ∇fL
h (x

∗)T (x − x∗) < 0 (respectively ∇fS
h (x

∗)T (x − x∗) < 0), since
fh is strictly L-pseudoconvex (respectively strictly S-pseudoconvex). By using
similar arguments to those for Theorem 4, we see that x∗ ∈ XLU

SP for (MIP2)
if conditions (i) and (iii) are satisfied. On the other hand, since ∇fS

h (x
∗) ≤

∇fL
h (x

∗) (respectively ∇fL
h (x

∗) ≤ ∇fS
h (x

∗)), by using similar arguments to those
for Theorem 12 the result follows if condition (ii) and (iii) are satisfied. �

5. Conclusions

In this paper we have considered two order relations on interval space, namely
the relation LU and the relation LS which incorporate the quantitative prop-
erties of width (noise, risk, etc.). Also, following Wu (2009) and Stefanini and
Bede (2009), respectively, by considering pseudoconvexity and gH-derivative for
interval valued functions, we have obtained KKT conditions for multiobjective
optimization problems with interval valued objective functions considering LU
and LS order relations. For the case of order relation LU the results obtained
are more general than those obtained in Wu (2009), and for the order relation
LS, the results obtained are novel. Moreover, we have considered the gradient
for interval valued functions using gH-derivative and we have used it to obtain
the KKT optimality conditions. These results are more general than other similar
results obtained using H-derivative and, consequently, the gradient of the interval
valued function is more general when defined using gH-derivative.

Although the equality constraints are not considered in this paper, we can use a
similar methodology to that proposed in this paper to handle equality constraints.
The constraint functions in this paper are still real valued, in future research, one
may consider the extension to the constraint functions being the interval valued
functions.
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