Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We devote this paper to study of multiobjective programming problems with interval valued objective functions. For this, we consider two order relations LU and LS on the set of all closed intervals and propose several concepts of Pareto optimal solutions and generalized convexity. Based on generalized convexity (viz. LU and LS-pseudoconvexity) and generalized differentiability (viz. gHdifferentiablity) of interval valued functions, the KKT optimality conditions for aforesaid problems are obtained. The theoretical development is illustrated by suitable examples.
Czasopismo
Rocznik
Tom
Strony
19--45
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia
autor
- Department of Applied Sciences, NITTTR (under Ministry of HRD of India), Bhopal, M.P., India dk
autor
- Department of Applied Mathematics, Rajiv Gandhi Proudyogiki Vishwavidyalaya (state technological university of M.P.), Bhopal, M.P., India
Bibliografia
- 1. AHMAD, I., JAYSWAL, A. and BANERJEE, J. (2013) On interval-valued optimization problems with generalized invex functions. J. Ineq. Appl. 313. http://www.journalofinequalitiesandapplications.com/content/2013/1/313.
- 2. AHMAD, I., SINGH, D. and AHMAD, B. (2014) Optimality conditions for invex interval-valued nonlinear programming problems involving generalized Hderivative. (Accepted in FILOMAT).
- 3. ASSEV, S. M. (1986) Quasilinear operators and their applications in the theory of multivalued mappings. Proceedings of the Steklov Institute of Mathematics 2, 23-52.
- 4. AUBIN, J. P. and CELLINA, A. (1984) Differential Inclusions. Springer, NY.
- 5. AUBIN, J. P. and FRANKOWSKA, H. (1990) Set-valued Analysis. Birkh¨auser, Boston.
- 6. AUBIN, J. P., and FRANKOWSKA, H. (2000) Introduction: set-valued analysis in control theory. Set valued Anal. 8, 1-9.
- 7. BANKS, H. T. and JACOBS, M. Q. (1970) A differential calculus for multifunctions. J. Math. Anal. Appl. 29, 246-272.
- 8. BAZARRA, M. S., SHERALI, H. D. and SHETTY, C.M. (1993) Nonlinear Programming. Wiley, New York.
- 9. BEDE, B. and GAL, S.G. (2005) Generalization of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets Syst. 151, 581-599.
- 10. BHURJEE, A. and PANDA, G. (2012) Efficient solution of interval optimization problem. Math. Meth. Oper. Res. 76, 273-288.
- 11. CHALCO-CANO, Y., LODWICK, W.A. and RUFIAN-LIZANA, A. (2013) Optimality conditions of type KKT for optimization problem with intervalvalued objective function via generalized derivative. Fuzzy Optim. Decis. Making (DOI 10.1007/s10700-013-9156-y).
- 12. CHALCO-CANO, Y., ROMAN-FLORES, H. (2008) On the new solution of fuzzy differential equations. Chaos, Solitons and Fractals 38, 112–119.
- 13. CHALCO-CANO, Y., ROMAN-FLORES, H. and JIMENEZ-GAMERO, M. D. (2011) Generalized derivative and π-derivative for set valued functions. Inform. Sci. 181, 2177-2188.
- 14. De BLASI, F. S. (1976) On the differentiability of multifunctions. Paci. J. Maths 66, 67-91.
- 15. HOSSEINZADE, E. and HASSANPOUR, H. (2011) The Karush-Kuhn-Tucker optimality conditions In interval-valued multiobjective programming problems. J. Appl. Math. Inform. 29, 5-6, 1157–1165.
- 16. HONG-YI, C. (2007) Interval programming model for risk-based partner selection of virtual enterprise. Chin. Buss Review 6, 34-41.
- 17. HUKUHARA, M. (1967) Integration des applications measurablesdont la valeuer est un compact convexe. Funkcialaj Ekvacioj 10, 205-223.
- 18. IBRAHIM, A. G. M. (1996) On the differentiability of set-valued functions defined on a Banach space and mean value theorem. Appl. Math. Comput. 74, 76-94.
- 19. INUIGUCHI, M. and MIZOSHITA, F. (2012) Qualitative and quantitative data envelopment analysis with interval data. Annal. Oper. Res. 195 (1), 189–220.
- 20. JAYSWAL, A., STANCU-MINASIAN, I. and AHMAD, I. (2011) On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (8), 4119–4127.
- 21. JIANG, C., HAN, X., LIU, G. R. and LIU. G. P. (2008) A nonlinear interval number programming metod for uncertain optimization problems. Eur. J. Oper. Res. 188, 1-3.
- 22. MARKOV, S. (1979) Calculus for interval functions of a real variable. Comput. 22, 325-377.
- 23. SINGH, D., DAR B. A. and GOYAL, A. (2014) KKT optimality conditions for interval valued optimization problems. J. Nonlinear Annal. Optim. 5 (2), 91–103.
- 24. STEFANINI, L. (2010) A generalization of Hukuhara difference and division for internal and fuzzy arithmetic. Fuzzy sets and Systems 161, 1564–1584.
- 25. STEFANINI, L. and BEDE, B. (2009) Generalized Hukuhara differentiability of interval valued functions and interval differential equations. Nonlinear Anal. 71, 1311-1328.
- 26. TOLSTONOGOV, A. (2000) Differential Inclusions in a Banach Space. Kluwer.
- 27. WU, H. C. (2007) The Karush Kuhn Tucker optimality conditions in an optimization problem with interval valued objective functions. Eur. J. Oper. Res. 176, 46-59.
- 28. WU, H. C. (2008) On Interval Valued Nonlinear Programming Problems. J. Math. Anal. Appl. 338, 299 316.
- 29. WU, H. C. (2009) The Karush Kuhn Tucker optimality conditions in multiobjective programming problems with interval valued objective functions. Eur. J. Oper. Res. 196, 49-60.
- 30. ZHANG, J. (2013) Optimality Condition and Wolfe Duality for Invex IntervalValued Nonlinear Programming Problems. J. Appl. Math. Article ID 641345, 11 pages. http://dx.doi.org/10.1155/2013/641345
- 31. ZHANG, J., LIU, S. LI, L. FENG, Q. (2012) The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim Lett (DOI 10.1007/s11590 012-0601-6).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53d850b3-45de-4187-91db-fdf80af6bc18