Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we explore the implications of dataset limitations in semantic knowledge-driven machine translation (MT) for intelligent virtual assistants (IVA). Our approach diverges from traditional single-best translation techniques, utilizing a multi-variant MT method that generates multiple valid translations per input sentence through a constrained beam search. This method extends beyond the typical constraints of specific verb ontologies, embedding within a broader semantic knowledge framework. We evaluate the performance of multi-variant MT models in translating training sets for Natural Language Understanding (NLU) models. These models are applied to semantically diverse datasets, including a detailed evaluation using the standard MultiATIS++ dataset. The results from this evaluation indicate that while multi-variant MT method is promising, its impact on improving intent classification (IC) accuracy is limited when applied to conventional datasets such as MultiATIS++. However, our findings underscore that the effectiveness of multi-variant translation is closely associated with the diversity and suitability of the datasets utilized. Finally, we provide an in-depth analysis focused on generating variant-aware NLU datasets. This analysis aims to offer guidance on enhancing NLU models through semantically rich and variant-sensitive datasets, maximizing the advantages of multi-variant MT.
Rocznik
Tom
Strony
39--48
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- TCL Research Europeul. Grzybowska 5A, 00‐132 Warsaw, Poland
autor
- Samsung R&D Institute Poland‐ plac Europejski 1, 00‐844 Warsaw, Poland
autor
- Warsaw University of Technologyul. Nowowiejska 15/19, 00‐665 Warsaw, Poland
Bibliografia
- [1] A. Abujabal, C. D. Bovi, S.-R. Ryu, T. Gojayev, F. Triefenbach, and Y. Versley, “Continuous model improvement for language understanding with machine translation”. In: North American Chapter of the Association for Computational Linguistics, 2021.
- [2] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Guided open vocabulary image captioning with constrained beam search”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017, 936–945.
- [3] E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser, “SLURP: A Spoken Language Understanding Resource Package”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020.
- [4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners”, Advances in neural information processing systems, vol. 33, 2020, 1877–1901.
- [5] I. Casanueva, I. Vulić, G. Spithourakis, and P. Budzianowski, “Nlu++: A multi-label, slotrich, generalisable dataset for natural language understanding in task-oriented dialogue”. In: Findings of the Association for Computational Linguistics: NAACL 2022, 2022, 1998–2013.
- [6] X. Cheng, W. Xu, Z. Yao, Z. Zhu, Y. Li, H. Li, and Y. Zou, “Fc-mtlf: a fine-and coarse-grained multitask learning framework for cross-lingual spoken language understanding”. In: Proceedings of Interspeech, 2023.
- [7] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, É. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-lingual representation learning at scale”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, 8440–8451.
- [8] J. FitzGerald, C. Hench, C. Peris, S. Mackie, K. Rottmann, A. Sanchez, A. Nash, L. Urbach, V. Kakarala, R. Singh, S. Ranganath, L. Crist, M. Britan, W. Leeuwis, G. Tur, and P. Natarajan, “MASSIVE: A 1M-example multilingual natural language understanding dataset with 51 typologically-diverse languages”. In: A. Rogers, J. Boyd-Graber, and N. Okazaki, eds., Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada, 2023, 4277–4302, 10.18653/v1/2023.acl-long.235.
- [9] M. Fomicheva, L. Specia, and F. Guzmán, “Multi-hypothesis machine translation evaluation”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, 1218–1232.
- [10] J. Gaspers, P. Karanasou, and R. Chatterjee, “Selecting machine-translated data for quick bootstrapping of a natural language understanding system”. In: Proceedings of NAACL-HLT, 2018, 137–144.
- [11] R. Goel, W. Ammar, A. Gupta, S. Vashishtha, M. Sano, F. Surani, M. Chang, H. Choe, D. Greene, C. He, R. Nitisaroj, A. Trukhina, S. Paul, P. Shah, R. Shah, and Z. Yu, “PRESTO: A multilingual dataset for parsing realistic task-oriented dialogs”. In: H. Bouamor, J. Pino, and K. Bali, eds., Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 2023, 10820–10833, 10.18653/v1/2023.emnlp-main.667.
- [12] S. Gupta, R. Shah, M. Mohit, A. Kumar, and M. Lewis, “Semantic parsing for task oriented dialog using hierarchical representations”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, 2787–2792.
- [13] A. Huminski, F. Liausvia, and A. Goel, “Semantic roles in verbnet and framenet: Statistical analysis and evaluation”. In: Computational Linguistics and Intelligent Text Processing: 20th International Conference, CICLing 2019, La Rochelle, France, April 7–13, 2019, Revised Selected Papers, Part II, 2023, 135–147.
- [14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”. In: Proc. of the 6th International Conference on Learning Representations (ICRL 2015), San Diego, CA, 2015.
- [15] B. Levin, English verb classes and alternations: A preliminary investigation, University of Chicago press, 1993.
- [16] H. Li, A. Arora, S. Chen, A. Gupta, S. Gupta, and Y. Mehdad, “Mtop: A comprehensive multilingual task-oriented semantic parsing benchmark”. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 2021, 2950–2962.
- [17] O. Majewska and A. Korhonen, “Verb classification across languages”, Annual Review of Linguistics, vol. 9, 2023.
- [18] M. Moneglia, “Natural language ontology of action: A gap with huge consequences for natural language understanding and machine translation”. In: Language and Technology Conference, 2011, 379–395.
- [19] L. Qin, Q. Chen, T. Xie, Q. Li, J.-G. Lou, W. Che, and M.-Y. Kan, “Gl-clef: A global-local contrastive learning framework for cross-lingual spoken language understanding”. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, 2677–2686.
- [20] S. Schuster, S. Gupta, R. Shah, and M. Lewis, “Cross-lingual transfer learning for multilingual task oriented dialog”. In: Proceedings of NAACLHLT, 2019, 3795–3805.
- [21] R. Sennrich, B. Haddow, and A. Birch, “Improving neural machine translation models with monolingual data”. In: 54th Annual Meeting of the Association for Computational Linguistics, 2016, 86–96.
- [22] M. Sowański. “iva_mt_wslot-m2m100_418m-en-pl”, 2023. Hugging Face Model Hub.
- [23] M. Sowański. “iva_mt_wslot-m2m100_418m-en-pl”, 2023. Hugging Face Model Hub.
- [24] M. Sowański and A. Janicki, “Leyzer: A dataset for multilingual virtual assistants”. In: P. Sojka, I. Kopeček, K. Pala, and A. Horák, eds., Proc. Conference on Text, Speech, and Dialogue (TSD2020), Brno, Czechia, 2020, 477–486.
- [25] M. Sowański and A. Janicki, “Optimizing machine translation for virtual assistants: Multi-variant generation with verbnet and conditional beam search”. In: 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS), 2023, 1149–1154, 10.15439/2023F8601.
- [26] L. Sun, A. Korhonen, and Y. Krymolowski, “Verb class discovery from rich syntactic data”, Lecture Notes in Computer Science, vol. 4919, 2008, 16.
- [27] D. R. Traum, Speech acts for dialogue agents, Springer, 1999, 169–201.
- [28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need”, Advances in neural information processing systems, vol. 30, 2017.
- [29] W. Xu, B. Haider, and S. Mansour, “End-to-end slot alignment and recognition for cross-lingual NLU”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, 5052–5063.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53d76fe4-a222-447c-a8ff-6cc96b4e4a9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.