PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared studies and spectral properties of photochromic high silica glasses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structure of photochromic high silica glasses (PHSGs) was studied by UV–VIS–NIR and IR spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. PHSG plates were obtained by impregnation of silica porous glasses at first with AgNO3 aqueous solution (in or without the presence of the sensitizers, such as Cu(NO3)2 or Ce(NO3)3), next in the mixed halide salt (NH4Cl, KBr, KI) solution. Then a part of the samples was sintered at temperatures from 850 to 900 °C up to closing of the pores. The results of TEM study have shown that the PHSG plates have two-phase structure with inclusions of the size of 10–100 nm. According to XRD data, the PHSGs contain the AgBr phase. IR spectra confirmed the presence of AgI, AgCl, CeO2, CuCl2, CuCl phases in PHSGs.
Czasopismo
Rocznik
Strony
337--344
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • Grebenshchikov Institute of Silicate Chemistry, RAS, Nab. Makarova 2, 199034, Saint-Petersburg, Russia
autor
  • Grebenshchikov Institute of Silicate Chemistry, RAS, Nab. Makarova 2, 199034, Saint-Petersburg, Russia
  • Grebenshchikov Institute of Silicate Chemistry, RAS, Nab. Makarova 2, 199034, Saint-Petersburg, Russi
  • Grebenshchikov Institute of Silicate Chemistry, RAS, Nab. Makarova 2, 199034, Saint-Petersburg, Russia
  • Grebenshchikov Institute of Silicate Chemistry, RAS, Nab. Makarova 2, 199034, Saint-Petersburg, Russia
Bibliografia
  • [1] DROZDOVA I.A., ANTROPOVA T.V., TOLKACHEV M.D., Application of electron microscopy methods to the study of porous and quartz-like glasses, Optica Applicata 35(4), 2005, pp. 709–715.
  • [2] TSEKHOMSKAYA T.S., ROSKOVA G.P., VIL’TSEN E.G., ANFIMOVA I.N., Silver-cloride-activated photochromic Vicor glasses, Soviet Journal of Glass Physics and Chemistry 18(1), 1992, pp. 70–74.
  • [3] GIRSOVA M.A., DROZDOVA I.A., ANTROPOVA T.V., Structure and optical properties of photochromic quartz-like glass doped with silver halides, Glass Physics and Chemistry 40(2), 2014, pp. 162–166.
  • [4] KUMAR A., YU S.F., LI X.F., Random laser action in dielectric–metal–dielectric surface plasmon waveguides, Applied Physics Letters 95(23), 2009, article 231114.
  • [5] CHANGJUN MIN, VERONIS G., Absorption switches in metal–dielectric–metal plasmonic waveguides, Optics Express 17(13), 2009, pp. 10757–10766.
  • [6] VERONIS G., SHANHUI FAN, Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides, Applied Physics Letters 87(13), 2005, article 131102.
  • [7] ARAUJO R.J., TROTTER JR. D.M., High silver borosilicate glasses, Patent US – 6893991B2, date of patent: 17.05.2005.
  • [8] CAMPBELL K., MOORE J.T., Silver-selenide/chalcogenide glass stack for resistance variable memory and manufacturing method thereof, Patent USA no. 8.466.445 B2, date of patent: 18.06.2013.
  • [9] MOORE C.P., BLAIKIE R.J., ARNOLD M.D., An improved transfer-matrix model for optical superlenses, Optics Express 17(16), 2009, pp. 14260–14269.
  • [10] JEPPESEN C., NIELSEN R.B., BOLTASSEVA A., XIAO S., MORTENSEN N.A., KRISTENSEN A., Thin film Ag superlens towards lab-on-a-chip integration, Optics Express 17(25), 2009, pp. 22543–22552.
  • [11] HOMOLA J., Surface plasmon resonance sensors for detection of chemical and biological species, Chemical Reviews 108(2), 2008, pp. 462–493.
  • [12] JING ZHAO, XIAOYU ZHANG, YONZON C.R., HAES A.J., VAN DUYNE R.P., Localized surface plasmon resonance biosensors, Nanomedicine 1(2), 2006, pp. 219–228.
  • [13] YOOCHAN HONG, YONG-MIN HUH, DAE SUNG YOON, JAEMOON YANG, Nanobiosensors based on localized surface plasmon resonance for biomarker detection, Journal of Nanomaterials, 2012, article ID 759830.
  • [14] KOSTYUK G.K., SERGEEV M.M., GIRSOVA M.A., YAKOVLEV E.B., ANFIMOVA I.N., ANTROPOVA T.V., Local laser-induced change of optical properties in the bulk of photochromic porous silicate glass doped by silver and copper halides, Glass Physics and Chemistry 40(4), 2014, pp. 415–420.
  • [15] EL-BAYOUMI O.H., SUBRAMANIAN K.N., Crystallization of a cerium phosphate glass, Journal of the American Ceramic Society 60(3–4), 1977, pp. 161–165.
  • [16] CACHIA J.-N., DESCHANELS X., DEN AUWER C., PINET O., PHALIPPOU J., HENNIG C., SCHEINOST A., Enhancing cerium and plutonium solubility by reduction in borosilicate glass, Journal of Nuclear Materials 352(1–3), 2006, pp. 182–189.
  • [17] BOCKER W., BROKMEIER H.G., BUNGE H.J., Texture of silver-halide infrared fibers, Textures and Microstructures 24, 1995, pp. 239–253.
  • [18] SAMIEE S., GOHARSHADI E.K., Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method, Materials Research Bulletin 47(4), 2012, pp. 1089–1095.
  • [19] XU G.Q., ZHENG Z.X., TANG W.M., WU Y.C., Spectroscopic properties of Ce3+ doped silica annealed at different temperatures, Journal of Luminescence 124(1), 2007, pp. 151–156.
  • [20] HYUNG-JUN JEON, SUNG-CHUL YI, SEONG-GEUN OH, Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method, Biomaterials 24(27), 2003, pp. 4921–4928.
  • [21] TRUFFAULT L., MINH-TRI TA, DEVERS T., KONSTANTINOV K., HAREL V., SIMMONARD C., ANDREAZZA C., NEVIRKOVETS I.P., PINEAU A., VERON O., BLONDEAU J.-P., Application of nanostructured Ca doped CeO2 for ultraviolet filtration, Materials Research Bulletin 45(5), 2010, pp. 527–535.
  • [22] RAMADEVUDU G, RAO S.L.S., SHAREEFUDDIN A.H., CHARY M.N., FTIR and some physical properties of alkaline earth borate glasses containing heavy metal oxides, International Journal of Engineering Science and Technology 3(9), 2011, pp. 6998–7005.
  • [23] GENOV K., STAMBOLOVA I., SHIPOCHKA M., BOEVSKI I., VASSILEV S., BLASKOV V., Ag coated Bulgarian natural glass perlite via spray pyrolysis for decomposition of zone, Journal of the University of Chemical Technology and Metallurgy 46(4), 2011, pp. 363–368.
  • [24] PATRA A., DE G., KUNDU D., GANGULI D., Preparation and characterization of Al and B co-doped cerium containing sol–gel derived silica glasses, Materials Letters 42(3), 2000, pp. 200–206.
  • [25] BURNS A.E., ROYLE M., MARTIN S.W., Infrared spectroscopy of AgI doped Ag2 S + B2 S3 fast ion conducting thioborate glasses, Journal of Non-Crystalline Solids 262(1–3), 2000, pp. 252–257.
  • [26] KARTHIKEYAN B., Fluorescent glass embedded silver nanoclusters: an optical study, Journal of Applied Physics 103(11), 2008, article 114313.
  • [27] ARDELEAN I., CORA S., FT-IR, Raman and UV–VIS spectroscopic studies of copper doped 3Bi2O3•B2O3 glass matix, Journal of Materials Science: Materials in Electronics 19(6), 2008, pp. 584–588.
  • [28] ARDELEAN I., TIMAR V., FT-IR and Raman spectroscopic studies on MnO-B2O3-PbO-Ag2O glasses, Journal of Optoelectronics and Advanced Materials 10(2), 2008, pp. 246–250.
  • [29] ANDREESCU D., MATIJEVIĆ E., GOIA D.V., Formation of uniform colloidal ceria in polyol, Colloids and Surfaces A: Physicochemical Engineering Aspects 291(1–3), 2006, pp. 93–100.
  • [30] DAREZERESHKI E., BAKHTIARI F., A novel technique to synthesis of tenorite (CuO) nanoparticles from low concentration CuSO4 solution, Journal of Mining and Metallurgy, Section B: Metallurgy 47(1), 2011, pp. 73–78.
  • [31] IORDANESCU C.R., TENCIU D., FERARU I.D., KISS A., BERCU M., SAVASTRU D., NOTONIER R., GRIGORESCU C.E.A., Structure and morphology of Cu-oxides films derived from PLD processes, Digest Journal of Nanomaterials and Biostructures 6(2), 2011, pp. 863–868.
  • [32] SHAH A.H., MANIKANDAN E., BASHEER A.M., GANESAN V., Enhanced bioactivity of Ag/ZnO nanoroads – a comparative antibacterial study, Journal of Nanomedicine and Nanotechnology 4(3), 2013, article 168.
  • [33] WAGNER C.C., GONZALEZ M.M., BARAN E.J., Characterization of silver anthranilate, a promising antibacterial agent, Acta Farmacéutica Bonaerense 21(1), 2002, pp. 27–30.
  • [34] YAN-YAN DONG, JING HE, SHAO-LONG SUN, MING-GUO MA, LIAN-HUA FU, RUN-CANG SUN, Environmentally friendly microwave ionic liquids synthesis of hybrids from cellulose and AgX (X = Cl, Br), Carbohydrate Polymers 98(1), 2013, pp. 168–173.
  • [35] VARSAMIS C.P., KAMITSOS E.I., CHRYSSIKOS G.D., Spectroscopic investigation of AgI-doped borate glasses, Solid State Ionics 136–137, 2000, pp. 1031–1039.
  • [36] GUANJUN WANG, XI JIN, MOHUA CHEN, MINGFEI ZHOU, Matrix isolation infrared spectroscopic and theoretical study of the copper (I) and silver (I)–nitrous oxide complexes, Chemical Physics Letters 420(1–3), 2006, pp. 130–134.
  • [37] SULTANA N., ARAYNE M.S., TABASSUM H., Copper (I) complexes of triphenylphosphine and 2-methylpyridine, Pakistan Journal of Scientific and Industrial Research 40(5–12), 1997, pp. 55–58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53d6e29f-9000-47bc-9282-07b7eebbd5ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.