Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Energy harvesting shock absorbers can generate about 15-20 W of electric power for normal suspension velocities. However, higher weight, fail safe characteristics and space limitations have restricted development of regenerative shock absorbers to research prototypes. Power to weight ratio of regenerative shock absorbers can be improved by incorporating motion amplification. In the presented work, an innovative design of energy harvesting shock absorber has been presented that uses motion amplification for improving harvesting efficiency. Apart from improving electric power, the proposed solution is fail safe and can be easily incorporated in existing vehicles with only marginal change in suspension layout. Study includes detailed numerical analysis for vibration transmissibility to investigate comfort and safety. Further, a prototype has been fabricated and experimentation has been performed to compute electric power generated and comfort. Simulations have been performed on real size model with utilization of harvested electric power which indicates about 19% of overall harvesting efficiency.
Czasopismo
Rocznik
Tom
Strony
art. no. 2020104
Opis fizyczny
Bibliogr. 18 poz., il. kolor., fot., 1 rys.
Twórcy
autor
- Faculty of Mechanical Engineering, Vishwakarma University, Pune
autor
- Faculty of Mechanical Engineering and Robotic, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Automation, Al. Adama Mickiewicza 30,30-059 Kraków, Poland
autor
- MSEDCL, Office of Regional Director, Pune, India
Bibliografia
- 1. A. I. Sultoni, I. N. Sutantra, A. S. Pramono, Modeling, prototyping and testing of regenerative electromagnetic shock absorber, Appl. Mechanics and Materials, Trans Tech Publications, 493 (2018) 395 - 400.
- 2. N. V. Satpute, S. Singh, S. M. Sawant, Energy Harvesting Shock Absorber with Electromagnetic and Fluid Damping, Adv. Mech. Eng., 2014 (2014) 1 - 14.
- 3. W. Salman, L. Qi, X. Zhu, H. Pan, X. Zhang, S. Bano, Y. Yuan, A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles, Energy, 159 (2018) 361 - 372.
- 4. S. Singh, N. V. Satpute, Design and analysis of energy-harvesting shock absorber with electromagnetic and fluid damping, J. Mech. Sci. Technol., 29(4) (2015) 1591 - 1605.
- 5. R. Wang, R. Ding, L. Chen, Application of hybrid electromagnetic suspension in vibration energy regeneration and active control, J. Vib. Control, 24(1) (2018) 223 - 233.
- 6. E. Asadi, R. Ribeiro, M. B. Khamesee, A. Khajepour, A new adaptive hybrid electromagnetic damper: Modelling, optimization, and experiment, Smart Mater. Struct., 24(7) (2015) 075003.
- 7. Y. Pan, T. Lin, F. Qian, C. Liu, J. Yu, J. Zuo, L. Zuo, Modeling and field test of comact electromagnetic harvester for railroad transportation, Appl. Energy., 247 (2019) 309 - 321.
- 8. H. L. Guntur, W. Hendrowati, S. Mochammad, The Effect of Using Current Stabilizer to the Dynamic Characteristic of a Regenerative Shock Absorber, Appl. Mechanics and Materials- Trans Tech Publications, 758 (2015) 137 - 142.
- 9. R. Zhang, X. Wang, S. John, A Comprehensive review of the techniques on regenerative shock absorber systems, Energies, 11(5) (2018a) 1167.
- 10. R. Zhang, X. Wang, Z. Liu, A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation, J. Sound Vib., 417 (2018b) 260 - 276.
- 11. J. Mi, L. Xu, S. Guo, M. A. Abdelkareem, L. Meng, Suspension performance and energy harvesting property study of a novel railway vehicle bogie with the hydraulic-electromagnetic energy-regenerative shock absorber (No. 2017-01-1483), SAE Technical Paper (2017a).
- 12. J. Mi, L. Xu, S. Guo, L. Meng, M. A. Abdelkareem, Energy harvesting potential comparison study of a novel railway vehicle bogie system with the hydraulic-electromagnetic energy-regenerative shock absorber, ASME Joint Rail Conference (2017b).
- 13. M. Demetgul, I. Guney, Design of the hybrid regenerative shock absorber and energy harvesting from linear movement, J. Clean Ene. Tech., 5(1) (2017) 81 - 84.
- 14. Z. Zhang, X. Zhang, W. Chen, Y. Rasim, W. Salman, H. Pan, C. Wang, A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle, Appl. energy, 178 (2016) 177 - 188.
- 15. J. Zou, X. Guo, L. Xu, G. Tan, C. Zhang, J. Zhang, Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension. Shock Vib. (2017).
- 16. X. D. Xie, Q. Wang, Energy harvesting from a vehicle suspension system, Energy, 86 (2015) 385 - 392.
- 17. L. Chen, D. Shi, R. Wang, H. Zhou, Energy conservation analysis and control of hybrid active semiactive suspension with three regulating damping levels, Shock Vib., (2016).
- 18. N. V. Satpute, S. N. Satpute, L. M. Jugulkar, Hybrid electromagnetic shock absorber for energy harvesting in a vehicle suspension, J. Mech. Eng. Sci., 231(8) (2017) 1500 - 1517.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53ce4b50-493f-4537-9e55-62f215123a0e