PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sliding Mode Control-Based MPPT and Output Voltage Regulation of a Stand-alone PV System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When it comes to reducing emissions caused by the generation of electricity, among different renewable energy sources, the solar energy gains prominence, due to its geographical availability, simplicity of implementation, and absence of physical moving parts. However, the performance of photovoltaic systems is dependent on environmental conditions. Depending on temperature and solar irradiation, the photovoltaic (PV) system has an operating point where maximum power can be generated. The techniques that are implemented to find this operating point are the so-called maximum power point tracking (MPPT) algorithms. Since weather conditions are variable in nature, the output voltage of the PV system needs to be regulated to remain equal to the reference. Most of the existing studies focus either on MPPT or on voltage regulation of the PV system. In this paper, the two-stage PV system is implemented so that both MPPT and voltage regulation are achieved simultaneously. Additionally, an improved version of the perturb and observe (P&O) algorithm based on artificial potential fields (APF), called APF-P&O, is presented. According to the results of the simulations carried out in MATLAB/Simulink software, the APF-P&O method is more efficient than the conventional method.
Wydawca
Rocznik
Strony
159--173
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Kırıkkale University, Kırıkkale, Turkey
  • Kırıkkale University, Kırıkkale, Turkey
Bibliografia
  • Ali, M. N., Mahmoud, K., Lehtonen, M. and Darwish, M. M. F. (2021). An Efficient Fuzzy-Logic Based Variable-Step Incremental Conductance MPPT Method for Grid-Connected PV Systems. IEEE Access, 9, pp. 26420–26430. doi: 10.1109/ACCESS.2021.3058052.
  • Altamimi, S. N., Feilat, E. A. and Al Nadi, D. A. (2021). Maximum Power Point Tracking Technique Using Combined Incremental Conductance and Owl Search Algorithm. In: 2021 12th International Renewable Engineering Conference (IREC). IEEE, pp. 1–6. doi: 10.1109/IREC51415.2021.9427812.
  • Benadli, R., Bjaoui, M., Khiari, B. and Sellami, A. (2021). Sliding Mode Control of Hybrid Renewable Energy System Operating in Grid Connected and Stand-Alone Mode. Power Electronics and Drives, 6(1), pp. 144–166. doi: 10.2478/pead-2021-0009.
  • Bendib, B., Belmili, H. and Krim, F. (2015). A Survey of the Most Used MPPT Methods: Conventional and Advanced Algorithms Applied for Photovoltaic Systems. Renewable and Sustainable Energy Reviews, 45(May), pp. 637–648. doi: 10.1016/j.rser.2015.02.009.
  • Chowdhury, S. B. R., Mukherjee, A. and Gayen, P. K. (2021). Maximum Power Point Tracking of Photovoltaic System by Perturb & Observe and Incremental Conductance Methods Under Normal and Partial Shading Conditions. In: 2021 Innovations in Energy Management and Renewable Resources (52042). IEEE, pp. 1–6. doi: 10.1109/IEMRE52042.2021.9386964.
  • Elahi, M., Ashraf, H. M. and Kim, C.-H. (2022). An Improved Partial Shading Detection Strategy Based on Chimp Optimization Algorithm to Find Global Maximum Power Point of Solar Array System. Energies, 15(4), p. 1549. doi: 10.3390/en15041549.
  • Farhat, M., Barambones, O. and Sbita, L. (2017). A New Maximum Power Point Method Based on a Sliding Mode Approach for Solar Energy Harvesting. Applied Energy, 185, pp. 1185–1198. doi: 10.1016/j.apenergy.2016.03.055.
  • Goudarzian, A., Khosravi, A. and Raeisi, H. A. (2019). Optimized Sliding Mode Current Controller for Power Converters with Non-Minimum Phase Nature. Journal of the Franklin Institute, 356(15), pp. 8569–8594. doi: 10.1016/j.jfranklin.2019.08.026.
  • Grzesiak, L. (2017). Hybrid MPPT Algorithm for PV Systems Under Partially Shaded Conditions Using a Stochastic Evolutionary Search and a Deterministic Hill Climbing. Power Electronics and Drives, 2(2), pp. 49–59. doi: 10.5277/PED170212.
  • Guldemir, H. (2015). Study of Sliding Mode Control of DC–DC Buck Converter. (January 2011). doi: 10.4236/epe.2011.34051.
  • Inomoto, R. S., Monteiro, J. R. B. A. and Sguarezi Filho, A. J. (2022). Boost Converter Control of PV System Using Sliding Mode Control With Integrative Sliding Surface. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6777(c), pp. 1–1. doi: 10.1109/jestpe.2022.3158247.
  • Jayaprakash, S. and Ramakrishnan, V. (2014). Analysis of Solar Based Closed Loop DC–DC Converter Using PID and Fuzzy Logic Control for Separately Excited Motor Drive. In: 2014 IEEE National Conference on Emerging Trends In Renewable Energy Sources And Energy Management (NCET NRES EM), pp. 118–122. doi: 10.1109/NCETNRESEM.2014.708875.
  • Kermadi, M., Salam, Z., Eltamaly, A. M., Ahmed, J., Mekhilef, S., Larbes, C. and Berkouk, E. M. (2020). Recent Developments of MPPT Techniques for PV Systems Under Partial Shading Conditions: A Critical Review and Performance Evaluation. IET Renewable Power Generation, 14(17), pp. 3401–3417.
  • Kesilmiş, Z. (2022). A Manhattan Metric Based Perturb and Observe Maximum Power Point Tracking Algorithm for Photovoltaic Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), pp. 469–492. doi: 10.1080/15567036.2022.2046662.
  • Komurcugil, H., Biricik, S., Bayhan, S. and Zhang, Z. (2021). Sliding Mode Control: Overview of Its Applications in Power Converters. IEEE Industrial Electronics Magazine, 15(1), pp. 40–49. doi: 10.1109/MIE.2020.2986165.
  • Kordestani, M., Mirzaee, A., Safavi, A. A. and Saif, M. (2018). Maximum Power Point Tracker (MPPT) for Photovoltaic Power Systems – A Systematic Literature Review. In: 2018 European Control Conference (ECC). IEEE, pp. 40–45. doi: 10.23919/ECC.2018.8550117.
  • Ling, R., Shu, Z., Hu, Q. and Song, Y.-D. (2018). Second-Order Sliding-Mode Controlled Three- Level Buck DC–DC Converters. IEEE Transactions on Industrial Electronics, 65(1), pp. 898–906. doi: 10.1109/TIE.2017.2750610.
  • Ma, M., Liu, X. and Lee, K. Y. (2020). Maximum Power Point Tracking and Voltage Regulation of Two- Stage Grid-Tied PV System Based on Model Predictive Control. Energies, 13(6), p. 1304. doi: 10.3390/en13061304.
  • Manuel, N. L., İnanç, N. and Erten, M. Y. (2021). Control of Mobile Robot Formations Using A-star Algorithm and Artificial Potential Fields. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 12(2), pp. 57–67. doi: 10.14203/j.mev.2021.v12.57-67.
  • Mira, M. C., Knott, A., Thomson, O. C. and Andersen, M. A. E. (2013). Boost Converter with Combined Control Loop for A Stand-Alone Photovoltaic Battery Charge System. In: 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, pp. 1–8. doi: 10.1109/COMPEL.2013.6626428.
  • Mohamed, S. A. and Abd El Sattar, M. (2019). A Comparative Study of P&O and INC Maximum Power Point Tracking Techniques for Grid-Connected PV Systems. SN Applied Sciences, 1(2), p. 174. doi: 10.1007/s42452-018-0134-4.
  • Park, H.-H. and Cho, G.-H. (2014). A DC–DC Converter for a Fully Integrated PID Compensator with a Single Capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(8), pp. 629–633. doi: 10.1109/TCSII.2014.2327351.
  • Podder, A. K., Roy, N. K. and Pota, H. R. (2019). MPPT Methods for Solar PV Systems: A Critical Review Based on Tracking Nature. IET Renewable Power Generation, 13(10), pp. 1615–1632.
  • Pradhan, C., Senapati, M. K., Ntiakoh, N. K. and Calay, R. K. (2022). Roach Infestation Optimization MPPT Algorithm for Solar Photovoltaic System. Electronics, 11(6), p. 927. doi: 10.3390/electronics11060927.
  • Rahman Habib, H. U., Wang, S., Elmorshedy, M. F. and Waqar, A. (2019). Performance Analysis of Combined Model-Predictive and Slide-Mode Control for Power Converters in Renewable Energy Systems. In: 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). IEEE, pp. 1–5. doi: 10.1109/ICEMS.2019.8921860.
  • Ravindranath Tagore, Y., Rajani, K. and Anuradha, K. (2022). Dynamic Analysis of Solar Powered Two-Stage DC–DC Converter with MPPT and Voltage Regulation. International Journal of Dynamicsand Control, pp. 1–15. doi: 10.1007/s40435-022-00930-8.
  • Saidi, A. and Benachaiba, C. (2016). Comparison of IC and P&O Algorithms in MPPT for Grid Connected PV Module. In: 2016 8th International Conference on Modelling, Identification and Control (ICMIC). IEEE, pp. 213–218. doi: 10.1109/ICMIC.2016.7804300.
  • Saidi, K., Maamoun, M. and Bounekhla, M. (2019). A New High Performance Variable Step Size Perturb-and-Observe MPPT Algorithm for Photovoltaic System. International Journal of Power Electronics and Drive Systems (IJPEDS), 10(3), p. 1662. doi: 10.11591/ijpeds.v10.i3.pp1662-1674.
  • Sarvi, M. and Azadian, A. (2021). A Comprehensive Review and Classified Comparison of MPPT Algorithms in PV Systems. Energy Systems, 13(2), pp. 281–320. doi: 10.1007/s12667-021-00427-x
  • Sheikh Ahmadi, S. H., Karami, M., Gholami, M. and Mirzaei, R. (2022). Improving MPPT Performance in PV Systems Based on Integrating the Incremental Conductance and Particle Swarm Optimization Methods. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 46(1), pp. 27–39. doi: 10.1007/s40998-021-00459-0.
  • Stephen, A. A., Musasa, K. and Davidson, I. E. (2022). Modelling of Solar PV Under Varying Condition with an Improved Incremental Conductance and Integral Regulator. Energies, 15(7), p. 2405. doi: 10.3390/en15072405.
  • Sulligoi, G., Bosich, D., Giadrossi, G., Zhu, L., Cupelli, M. and Monti, A. (2014). Multiconverter Medium Voltage DC Power Systems on Ships: Constant-Power Loads Instability Solution Using Linearization via State Feedback Control. IEEE Transactions on Smart Grid, 5(5), pp. 2543–2552. doi: 10.1109/TSG.2014.2305904.
  • Ullah, S. (2021). Robust Back-stepping Based Higher Order Sliding Mode Control of Non-Inverted Buck-Boost Converter for a Photovoltaic System. Power Electronics and Drives, 6(1), pp. 113–127. doi: 10.2478/pead-2021-0007.
  • Utkin, V. (2013). Sliding Mode Control of DC/DC Converters. Journal of the Franklin Institute, 350(8), pp. 2146–2165. doi: 10.1016/j.jfranklin.2013.02.026.
  • Wei, Q. et al. (2017). Model Predictive Control of Capacitor Voltage Balancing for Cascaded Modular DC–DC Converters. IEEE Transactions on Power Electronics, 32(1), pp. 752–761. doi: 10.1109/TPEL.2016.2530869.
  • Wu, L., Wu, B., Xu, D. and Zargari, N. R. (2022). Sliding Mode Control in Power Converters and Drives: A Review. IEEE/CAA Journal of Automatica Sinica, 9(3), pp. 392–406. doi: 10.1109/JAS.2021.1004380.
  • Xu, Z.-R.,Yang, P., Zhou, D.-B., Li, P., Lei, J.-Y. and Chen, Y.-R. (2015). An Improved Variable Step Size MPPT Algorithm Based on INC. Journal of Power Electronics, 15(2), pp. 487–496. doi: 10.6113/JPE.2015.15.2.487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53c962fa-5739-4446-a4c7-04a36a290014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.