PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminium and copper plates are explosively cladded with Al 5052, copper and SS 304 interlayers and the results are reported. While continuous molten layer is obtained in conventional explosive clads, a smooth interface, devoid of defects, is obtained in interlayer laced explosive clads. The mechanical properties of interlayer laced explosive clads confirm higher kinetic energy utilization leading to stronger clad. Ram tensile, shear strengths and Vickers microhardness of Al–Cu explosive clad with different interlayers are higher than conventional two layer clad.
Rocznik
Strony
563--568
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
  • Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamilnadu 608002, India
autor
  • Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860 8555, Japan
Bibliografia
  • [1] F. Findik, Recent developments in explosive welding, Materials and Design 32 (3) (2011) 1081–1093.
  • [2] S. Mroz, G. Stradomski, H. Dyja, A. Galka, Using the explosive cladding method for production of Mg–Al-bimetallic bars, Archives of Civil and Mechanical Engineering 15 (2) (2015) 317–323.
  • [3] M. Acarer, Electrical, corrosion and mechanical properties of aluminum–copper joints produced by explosive welding, Journal of Materials Engineering and Performance 21 (11) (2012) 2375–2379.
  • [4] B. Gulenc, Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method, Materials and Design 29 (1) (2008) 275–278.
  • [5] K. Hokamoto, A. Chiba, M. Fujita, T. Izuma, Single-shot explosive welding technique for the fabrication of multilayered metal base composites: effect of welding parameters leading to optimum bonding condition, Composites Engineering 15 (5) (1995) 1069–1079.
  • [6] P. Tamilchelvan, K. Raghukandan, S. Saravanan, Kinetic energy dissipation in Ti–SS explosive cladding with multi loading ratios, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 38 (M1) (2014) 91–96.
  • [7] J.H. Han, J.P. Ahn, M.C. Shin, Effect of interlayer thickness on shear deformation behaviour of AA5083 aluminum alloy/ SS41 steel plates manufactured by explosive welding, Journal of Materials Science 38 (1) (2003) 13–18.
  • [8] P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, R. Tomoshige, Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel, Journal of Materials Processing Technology 195 (1–3) (2008) 232–240.
  • [9] S. Saravanan, K. Raghukandan, Thermal kinetics in explosive cladding of dissimilar metals, Science and Technology of Welding and Joining 17 (2) (2012) 99–103.
  • [10] ASTM E 384-99, Standard Test for Microindentation Hardness of Materials, ASTM International, 1999.
  • [11] MIL-J-24445A, Joint, Bimetallic Bonded, Aluminum to Steel, Department of Defence Military Specification, 1977.
  • [12] A STM B 898-99, Standard Specification for Reactive and Refractory Metal Clad Plate, 1999.
  • [13] V.I. Lysak, S.V. Kuzmin, Energy balance during explosive welding, Journal of Materials Processing Technology 222 (2015) 356–364.
  • [14] E. Zamani, G.H. Liaghat, Explosive welding of stainless steel– carbon steel coaxial pipes, Journal of Materials Science 47 (2) (2012) 685–695.
  • [15] A. Durgutlu, H. Okuyucu, B. Gulenc, Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel, Materials and Design 29 (7) (2008) 1480–1484.
  • [16] N. Kahraman, B. Gulenc, Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process, Journal of Materials Processing Technology 169 (1) (2005) 67–71.
  • [17] Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, B.A. Chin, Microstructure and properties of magnesium AZ31B– aluminium 7075 explosively welded composite plate, Material Science and Engineering A 527 (2010) 2241–2245.
  • [18] N. Kahraman, B. Gulenc, F. Findik, Corrosion and mechanical–microstructural aspects of dissimilar joints of Ti–6Al–4V and Al plates, International Journal of Impact Engineering 34 (8) (2007) 1423–1432.
  • [19] S. Saravanan, K. Raghukandan, Influence of interlayer in explosive cladding of dissimilar metals, Materials and Manufacturing Processes 28 (5) (2013) 589–594.
  • [20] S.N. Shoukry, A.A. Hegazy, Manufacturing of multi clads using a single explosive charge, Propellants, Explosives and Pyrotechnics 13 (5) (1988) 144–148.
  • [21] P. Mastanaiah, G. Madhusudhan Reddy, K. Satya Prasad, C.V. S. Murthy, An investigation on microstructures and mechanical properties of explosive cladded c103 niobium alloy over C263 nimonic alloy, Journal of Materials Processing Technology 214 (11) (2014) 2316–2324.
  • [22] S.A.A. Akbari Mousavi, S.T.S. Al-Hassani, A.G. Atkins, Bond strength of explosively welded specimens, Materials and Design 29 (7) (2008) 1334–1352.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53c764da-5fb0-4652-b474-bd1787dcee56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.