Identyfikatory
Warianty tytułu
Alternatywne równanie do kalkulacji balistycznych granic tarczy Whipple'a w „trybie roztrzaskania”, oparte na charakterystyce dużego odłamka centralnego
Języki publikacji
Abstrakty
In the shatter regime of a Whipple shield, a large central fragment makes a significant contribution to the damage-causing capacity of the debris cloud. Herein we present a feasibleschemefor theidentification and measurement of this large central fragment and propose an alternative approach to the ballistic limit equation (BLE) for the Whipple shield, deducing an alternative ballistic limit in the shatter regime based on the large central fragment’s characteristics. This alternative BLE is compared with the phenomenological Whipple BLE, the JSC Whipple BLE and the Ryan curve. Our alternative BLE, modified at the incipient fragmentation and completed fragmentation point, is shown to agree well with experimental results.
W tzw. trybie „roztrzaskania” tarczy Whipple'a, duży centralny fragment obiektu zderzeniowego odpowiada za znaczną część ogólnej zdolności chmury odłamków do powodowania zniszczeń. W niniejszym opracowaniu przedstawiono realny schemat identyfikacji i pomiaru tego dużego centralnego fragmentu i na tej podstawie zaproponowano alternatywne podejście do balistycznego równania granicznego (BLE) dla tarczy Whipple'a. Wyznaczono alternatywną graniczną wartość balistyczną w reżimie roztrzaskania na podstawie charakterystyki centralnego fragmentu.Takie alternatywne podejście jest porównane z fenomenologicznym równaniem dla tarczy Whipple'a, z równaniem JSC Whipple oraz i z tzw. krzywą Ryana. Proponowane alternatywne równanie BLE, zmodyfikowane w punkcie początkowej i końcowej fragmentacji, wykazuje dobry poziom spójności z wynikami eksperymentalnymi.
Czasopismo
Rocznik
Tom
Strony
12--29
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wzory
Twórcy
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5th South Zhongguancun Street, 100081, Beijing, China
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5th South Zhongguancun Street, 100081, Beijing, China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5th South Zhongguancun Street, 100081, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 5th South Zhongguancun Street, 100081, Beijing, China
Bibliografia
- [1] Whipple F. L., 1947, “Meteorites and space travel,” Astronomical Journal, 52, 132-137.
- [2] Kang P., Youn S. K. and Lim J. H., 2013 “Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact,” Aerospace Science and Technology, 29, 413-425.
- [3] Zhang X. T., Wang R.Q., Liu J. X., Li X. G. and Jia G. H., 2018, “A numerical method for the ballistic performance prediction of the sandwiched open cell aluminum foam under hypervelocity impact,” Aerospace Science and Technology, 75, 254-260.
- [4] Cour-Palais B. J., 1969, “Meteoroid protection by multiwall structures,” AIAA Hypervelocity Impact Conference, Cincinnati, OH, USA.
- [5] Christiansen E. L. and Justin H. K., 2001, “Ballistic limit equations for spacecraft shielding,” International Journal of Impact Engineering, 26, 93-104.
- [6] Ryan S., Bjorkman M. and Christiansen E. L., 2011, “Whipple shield performance in the shatter regime,” International Journal of Impact Engineering, 38, 504-510.
- [7] Schafer F. K., 2006, “An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates,” International Journal of Impact Engineering, 33, 745-762.
- [8] Cohen L. J., 1995, “A debris cloud cratering model,” International Journal of Impact Engineering, 17, 229-240.
- [9] Ding L., Li C., Pang B. and Zhang B., 2008, “Ballistic limit equations in ballistic and shatter regions,” International Journal of Impact Engineering, 35, 1490-1496.
- [10] Francesconi A., Giacomuzzo C., Feltrin F., Antonello A. and Savioli L., 2015, “An engineering model to describe fragments clouds propagating inside spacecraft in consequence of space debris impact on sandwich panel structures,” Acta Astronautica, 116, 222-228.
- [11] Piekutowski A. J., 1996, Formation and Description of Debris Clouds Produced by Hypervelocity Impact, NAS8-38856.
- [12] Chi R., 2010, Research and modeling of debris cloud produced by hypervelocity impact of projectile with thin plate, PhD Thesis, Harbin Institute of Technology, 100-120. (in Chinese)
- [13] Wen K., Chen X. W., Chi R. Q. and Lu Y. G., 2020, “Analysis on the fragmentation of sphere hypervelocity impacting on thin plate,” International Journal of Impact Engineering, 146, 103721.
- [14] Wen K., Chen X. W., 2021, “Failure evolution in hypervelocity impact of Al spheres onto thin Al plates,” International Journal of Impact Engineering, 147, 103727.
- [15] Zhang X., Jia G. and Huang H., 2011, “Fragment identification and statistics method of hypervelocity impact SPH simulation,” Chinese Journal of Aeronautics, 24, 18-24.
- [16] Liang S. C., Li Y., Chen H., Huang J. and Liu S., 2013, “Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set,” International Journal of Impact Engineering, 56, 27-31.
- [17] Sokolov V. G., Christiansen E. L., Gorbenko A. V., Feldstein V. A., Romanchenkov V. P., Panichkin N. G., Yachlakov Y. V. and Zinchenko L. V., 2001, “The effect of thin deployable construction elements of the international space station on the probability of its hull penetration by meteoroids and orbital debris, International Journal of Impact Engineering, 26, 725-734.
- [18] Hopkins A. K., Lee T. W. and Swift H. F., 1972, “Material phase transformation effects upon performance of spaced bumper systems,” Journal of Spacecraft and Rockets, 9(5), 342-345.
- [19] Hayashida K. B. and Robinson J. H., 1991, Single wall penetration equations, NASA TM-103565.
- [20] Christiansen E. L., 1993, “Design and performance equations for advanced meteoroid and debris shield,” International Journal of Impact Engineering, 14, 145-156.
- [21] Reimerdesa H. G., Nolke D. and Schafer F., 2006, “Modified Cour-Palais/Christiansen damage equations for double-wall structures,” International Journal of Impact Engineering, 33, 645-654.
- [22] Swift H., Preonas D., Dueweke P. and Bertke R., 1970, Response of materials to impulsive loading. AFML-TR-70e135. Dayton: Air Force Materials Laboratory, Wright Patterson Air Force Base.
Uwagi
1. This work was supported by the National Natural Science Foundation of China (11872118,11627901).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53c5bebf-0c45-42c6-a37f-10c6edf9ba0e