PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compaction-related style of Rusophycus preservation from Furongian (Upper Cambrian) of Holy Cross Mountains (Poland)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In general, the trace fossil Rusophycus, preserved as a concave-upward structure on the top of a bed, is considered to be a fossilized marking, made by a trace maker. The structures described from the Cambrian (Furongian) of central Poland are genetically related to Rusophycus. However, despite their occurrence on the tops of beds, they are not fossilized traces, but compaction-related features, resulting from differential sandstone and mudstone compaction with possible mediation by organic-rich, heterolithic sediments. The preservation of these structures probably was influenced by biofilms or biomats.
Słowa kluczowe
Rocznik
Strony
317--327
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL- 00-818 Warszawa, Poland; address for correspondence: 77 Leadside Road, Aberdeen AB251RX, Aberdeenshire, Scotland, United Kingdom
Bibliografia
  • 1. Baldwin, B., 1971. Ways of deciphertng compacted sediments. Journal of Sedimentary Research, 41: 293-301.
  • 2. Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M. & Uchman, A., 2006. Names for trace fossils: a uniform approach. Lethaia, 39: 265-286.
  • 3. Bottjer, D. & Hagadorn, J. W., 2007. Mat growth feafures, In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S.,Altermann, W. & Catuneau, O. (eds), Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Elsevier, Amsterdam, pp. 53-71.
  • 4. Bromley, R. G., 1996. Trace Fossils: Biology, Taphonomy and Applications. Chapman & Hall, Routledge, 386 pp.
  • 5. Bromley, R. G. & Asgaard, U., 1972. Notes on Greenland trace fossils. I. Freshwater Cruziana from the Upper Triassic of Jameson Land, East Greenland. Grönlands Geologiske Undersogelse, 49: 7 13.
  • 6. Bromley, R. G. & Asgaard, U., 1979. Triassic freshwaler ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28: 39-80.
  • 7. Calner, M. & Eriksson, M. E., 2011. The record of microbially induced sedimenlary struclures (MISS) in the Swedish Paleozoic. SEPM Society for Sedimentary Geology Special Publication, 101: 29-35.
  • 8. Carmona, N. B., Ponce, J. J., Wetzel, A., Bournod, C. N. & Cuadrado, D. G., 2012. Microbially induced sedimentary structures in Neogene tidal flats from Argentina: Paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 353-355: 1-9.
  • 9. Crimes, T. P., 1975. The production and preservation of trilobite resting and furrowing traces Lethaia, 8: 35-48.
  • 10. Crimes, T. P., 1970a. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from Lower Palaeozoic strata. In: Crimes, T. P. & Harper, J. C. (eds), Trace Fossils. Geological Journal Special Issue, 3: 101-126.
  • 11. Crimes, T. P., 1970b. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geological Journal, 7: 47-68.
  • 12. Dżułyński, S. & Żak, C., 1960. Sedimentary environment of the Cambrian quartzites in the Holy Cross Mounlains, Cenlral Poland, and their relalionship to the flysch facies. Rocznik Polskiego Towarzystwa Geologicznego, 30: 213-241.
  • 13. Eriksson, P. G., Schieber, J., Bouougri, E., Gerdes, G., Porada, H., Banerjee, S., Bose, P. K. & Sarkar, S., 2007. Classification of structures left by microbial mats in their host sediments. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S.Altermann, W. & Catuneau, O. (eds), Atlas of Microbial Mats Feaures Preserved within the Clastic Rocks Record. Elsevier, Amsterdam, pp. 39-52.
  • 14. Frey, R. W. & Pemberton, S. G., 1985. Biogenic structures in outcrops and cores. I Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33: 72-115.
  • 15. Goldring, R. & Seilacher, A., 1971. Limulid undertracks and their sedimentological implications. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 31: 422-442.
  • 16. Hagadorn, J. W. & Bottjer, D. J., 1997. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic setlings at the Prolerozoic-Phanerozoic transition. Geology, 25: 1047-1050.
  • 17. Heyler, D. & Lessertisseur, J., 1963. Pistes de tétrapodes permiens dans la region de Lodeve (Hérault). Mémoires du Muséum d’Histoire Naturelle, Nouvelle Série, Série C, Sciences de la Terre, 11: 125-221.
  • 18. Jaworowski, K. & Sikorska, M., 2006. Łysogóry Unit (Central Poland) versus East European Craton - application of sedimentological data from Cambrian siliciclastic associat ion. Geological Quarterly, 50: 77-88.
  • 19. Jensen, S., 1997. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42: 1-111.
  • 20. Jensen, S., Droser, M. L. & Gehling, J. G., 2005. Trace fossil preservation and the early evolution of ammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 220: 19-29.
  • 21. Kowalczewski, Z., Żylińska, A. & Szczepanik, Z., 2006. Kambr w Górach Świętokrzyskich. In: Skompski, S. & Żylińska, A. (eds), Procesy i zdarzenia w historii geologicznej Gór Świętokrzyskich, LXXVII Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Ameliówka k. Kielc 28-30 czerwca 2006 r., Materiały Konferencyjne. Polskie Towarzystwo Geologiczne, Państwowy Instytut Geologiczny, Wydział Geologii Uniwersytetu Warszawskiego, Warszawa, pp. 14-27.
  • 22. Lessertisseur, J., 1955. Traces fossiles d’activité animale et leur signification paléobiologique. Mémoires de la Société Géologique de la France, Nouvelle Série, 34:. 1-150.
  • 23. MacNaughton, R. B., 2007. The applicalion of trace fossils to biostratigraphy. In: Miller, W., (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 135148.
  • 24. Martinsson, A., 1965, Aspects of a Middle Cambrian thanatotope on Öland. GFF, 87: 181-230.
  • 25. Martinsson, A., 1970. Toponomy of trace fossils. In: Crimes, T. P. & Harper, J. C. (eds), Trace Fossils. Geological Journal Special Issue, 3: 323-330.
  • 26. Mullis, A. M., 1992. A numerical model for porosity modification at a sandstone-mudstone boundary by quartz pressure dissolution and diflusive mass transler. Sedimentology, 39: 99107.
  • 27. Nadon, G. C. & Issler, D. R., 1997. The compaction of floodplain sediments: timing, magnitude and implications. Geoscience Canada, 24: 37-43.
  • 28. Nagtegaal, P. J. C. 1978. Sandstone-framework instabillty as a function of burial diagenesis. Journal of the Geological Society, 135: 101-105.
  • 29. Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W. E., 2001. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71: 649-656.
  • 30. Orłowski, S., 1992a. Cambrian stratigraphy and stage subdivision in the Holy Cross Mountains, Poland. Geological Magazine, 129: 471-474.
  • 31. Orłowski, S., 1992b. Trilobite trace fossils and their stratigraphical significance in the Cambrian sequence of the Holy Cross Mountains, Poland. Geological Journal, 27: 15-34.
  • 32. Perrier, R. & Quiblier, J., 1974. Thickness changes in sedimentary layers during compaction history; methods for quantitative evaluation. American Association of Petroleum Geologists Bulletin, 58: 507-520.
  • 33. Pflüger, F., 1999. Matground structures and redox facies. Geology, 14: 25-39.
  • 34. Pollard, J. E., 1985. Isopodichnus, related arlhropod trace fossils and notostracans from Triassic fluvial sediments. Transactions of the Royal Society of Edinburgh, Earth Sciences, 76: 272-285.
  • 35. Porada, H. & Bouougri, E. H., 2007. Wrinkle structure - critical review. Earth-Science Reviews, 81: 199-215.
  • 36. Porada, H., Ghergut, J. & Bouougri, E. H., 2008. Kinneyia-type wrinkle structures - critical review and model of formalion. Palaios, 23: 65-77.
  • 37. Radwański, A. & Roniewicz, P., 1960. Ripple marks and other sedimentary structures of the Upper Cambrian at Wielka Wiśniówka (Holy Cross Mts.). Acta Geologica Polonica, 10: 371-397.
  • 38. Radwański, A. & Roniewicz, P., 1963. Upper Cambrian trilobite ichnocoenosis from Wielka Wiśniówka (Holy Cross Mountains, Poland). Acta Palaeontologica Polonica, 8: 259-280.
  • 39. Schieber, J., Bose, P. K., Eriksson, P. G. & Sarkar, S., 2007. Paleogeography of microbial mats in terrigenous clastics - environmental distribution of associated sedimentary features and the role of geologic time. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneau, O. (eds), Attas of Microbial Mats Features Pret served within the Clastic Rocks Record. Elsevier, Amsterdam, pp. 267-275.
  • 40. Schlirf, M., Uchman, A. & Kümmel, M., 2001. Upper Triassic (Keuper) non-matine trace fostils from the Haßberge area (Franconia, south-eastern Germany). Paläontologische Zeitschrift, 75: 71-96.
  • 41. Seilacher, A., 1970. Cruziana stratigraphy of “non-fossiliferous” Palaeozoic sandstones. In: Crimes, T. P. & Harper, J. C. (eds), Trace Fossils. Geological Journal Special Issue, 3: 447-475.
  • 42. Seilacher, A., 1994, How valid is Cruziana stratigraphy? Geologische Rundschau, 83: 752-758.
  • 43. Seilacher, A., 2007. Trace Fossil Analysis. Springer, Berlin, 238 pp.
  • 44. Seilacher, A., 1985. Triiobite palaeobiology and substrate relationships. Transactions of the Royal Society of Edinburgh. Earth Sciences, 76: 231-237.
  • 45. Seilacher, A. & Pflüger, F., 1994. From biomats to benfhic agriculture: a biohistoric revolution. In: Krumbein, W. E., Paterson, D. M. & Stal, L. J. (eds), Biostabilization of Sediments. Bibliotheks und Informationssystem der Carl von Ossietzky Universität Oldenburg, pp. 97-105.
  • 46. Sikorska, M., 2000. Silification history of Cambrian sandstones in the Wiśniówka area, Holy Cross Mts (Central Poland). Przegląd Geologiczny, 48: 251-258. [In Polish, English abstract].
  • 47. Simpson, S., 1957. On the trace-fossil Chondrites. Geological Society of London, Quarterly Journal, 112: 475-499.
  • 48. Stephenson, L. P., Plumley, W. J. & Palciauskas, V. V., 1992. A model for sandstone compaction by grain interpenetration. Journal of Sedimentary Research, 62: 11-22.
  • 49. Studencki, M., 1994. Wiśniówka Duża quarry. In: Kowalczewski, Z., Szulczewski, M., Migaszewski, Z. & Jarecka-Strycz, K. (eds), Europrobe Trans-Eutopean Suture Zone Workthop, Excursion Guidebook, the Holy Cross Mountains, Polish Geological Institute, Kielce, 51-57 pp.
  • 50. Wetzel, A., & Reisdorf, A. G., 2007. Ichnofabrics elucidate the accumulation history of a condensed interval containing a vertically emplaced ichfhyosaur skull. In: Bromley, R. G., Buatois, L. A., Mángano, M. G., Genise, J. F. & Melchor, R. N. (eds), Sediment-Organism Interactions: A Multifaceted Ichnology. SEPM Special Publications, 88: 241-251.
  • 51. Żylińska, A. & Radwański, A., 2008. Stop 2 - Wiśniówka Duża, Upper Cambrian. In: Pieńkowski, G. & Uchman, A. (eds), Ichnologial Sites of Poland: The Holy Cross Mountains and the Carpathian Flysch. The Pre-Congress and Post-Congress Field Trip Guidebook. Polish Geological Institute, Warszawa, pp. 37-46.
  • 52. Żylińska, A., Szczepanik, Z. & Salwa, S., 2006. Cambrian of the Holy Cross Mountains, Poland; biostratigraphy of the Wiśniówka Hill succession. Acta Geologica Polonica, 56: 443461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-53c351a6-0ccd-401e-97bf-8b265af78661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.